ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 8
Up
Algologia 2013, 23(3): 231–247
https://doi.org/10.15407/alg23.03.231
Physiology, Biochemistry, Biophysics

Dynamic of functional epigenotypes Dunaliella viridis Teodor. at cumulative and quasicontinuous cultivation

Bozhkov A.I., Sysenko E.I., Menzyanova N.G., Kizilova V.Yu.
Abstract

The dynamics of Dunaliella viridis epigenotypes at cumulative and quasicontinuous cultivation was studied. It was found that the pattern of nucleic acids, proteins, triacylglycerides, β-carotene, which characterizes epigenotype depends on the conditions of cultivation of microalgae. Quasicontinuous cultivation of D. viridis can increase biomass yield by 23 % compared to the cumulative cultivation, with the specific productivity was 3 times less than the cumulative cultivation. It was found that the growth rate of the microalgae correlates with the accumulation exopolysaccharides in the culture medium.

Keywords: Dunaliella viridis, epigenotype, biomass composition, cumulative cultivation, quasicontinuous cultivation

Full text: PDF 298K

References
  1. Abou-Shanab R.A., Ji M.K., Kim H.C. et al., J. Environ. Manage., 115:257–264, 2012. http://dx.doi.org/10.1016/j.jenvman.2012.11.022
  2. Amaro H.M., Barros R., Guedes A.C. et al., Trends Biotechnol., 31(2):92–98, 2013. http://dx.doi.org/10.1016/j.tibtech.2012.11.004
  3. Angelis S., Novak A.C., Sydney E.B. et al., Appl. Biochem. Biotechnol., 167(5):1092–1106, 2012. http://dx.doi.org/10.1007/s12010-012-9642-7
  4. Ben-Amotz A., Appl. Phycol., 7:65–68, 1995. http://dx.doi.org/10.1007/BF00003552
  5. Borowitzka L.J. and Borowitzka M.A., Bull. Mar. Sci., 47:244–252, 1990.
  6. Bozhkov A.I. and Menzyanova N.G., Hydrobiol. J., 33(6):132–138, 1997.
  7. Bozhkov A.I., Kovalyova M.K., and Menzyanova N.G., Usp. gerontol., 24(1):26–37, 2011.
  8. Bozhkov A.I., Menzyanova N.G., and Kovalyova M.K., Intern. J. Algae, 10(4):350–364, 2008. http://dx.doi.org/10.1615/InterJAlgae.v10.i4.50
  9. Bozhkov A.I., Menzyanova N.G., and Kovalyova M.K., Intern. J. Algae, 11(2):128–140, 2009. http://dx.doi.org/10.1615/InterJAlgae.v11.i2.30
  10. Bozhkov A.I., Menzyanova N.G., and Kovalyova M.K., Algologia, 18(3):229–243, 2008.
  11. Campenni L., Nobre B.P., Santos C.A. et al., Appl. Microbiol. Biotechnol., 97(3):1383–1393, 2013. http://dx.doi.org/10.1007/s00253-012-4570-6
  12. Christaki E., Bonos E., Giannenas I., and Florou-Paneri P., J. Sci. Food Agricult., 2012. [Epub ahead of print].
  13. Del Campo J.A., Garcia-González M., and Guerrero M.G., Appl. Microbiol. Biotechnol., 74(6):1163–1174, 2007. http://dx.doi.org/10.1007/s00253-007-0844-9
  14. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., and Smith F., Anal. Chem., 28(3):350–356, 1956. http://dx.doi.org/10.1021/ac60111a017
  15. Fang Y., Al-Assaf S., Phillips G.O. et al., Carbohydrate Polymers, 72(2):334–341, 2008. http://dx.doi.org/10.1016/j.carbpol.2007.08.021
  16. Fiori E., Mazzotti M., Guerrini F., and Pistocchi R., Aquat. Toxicol., 128–129C:79–90, 2012.
  17. Garcia-Gonzalez M., Moreno J., Canavate J.P. et al., Appl. Phycol., 15:177–184, 2003. http://dx.doi.org/10.1023/A:1023892520443
  18. Gavrilenko V.F., Ladygina M.E., and Khandobina L.M., Bolshoy praktikum po fiziologii rasteniy, Vyssh. shk., Moskva, 1975. [Rus.]
  19. Geun G.B., Baek G., Jin C.D. et al., Biores. Technol., 129C:343–350, 2012.
  20. Graziani G., Schiavo S., Nicolai M.A. et al., Food Funct., 4(1):144–152, 2013. http://dx.doi.org/10.1039/C2FO30198A
  21. Gribanov G.A. and Sergeev S.A., Vopr. med. khimii, 26:652–655, 1975.
  22. Gubler E.V. and Genkin A.A., Primenenie neparametricheskikh kriteriev statistiki v mediko-biologicheskikh issledovaniyakh, Meditsina, Leningrad, 1973. [Rus.]
  23. Horiuchi J., Ohba I., Tada K. et al., Biosci. Bioeng., 95(4):412–415, 2003. http://dx.doi.org/10.1016/S1389-1723(03)80078-6
  24. Jeong B.E., Ko E.J., and Joo H.G., Food Chem. Toxicol., 50(5):1480–1484, 2012. http://dx.doi.org/10.1016/j.fct.2012.01.034
  25. Jiang Y., Yoshida T., and Quigg A., Plant. Physiol. Biochem., 54:70–77, 2012. http://dx.doi.org/10.1016/j.plaphy.2012.02.012
  26. Lowry O.B., Rosebrough N.J., Farr A.L., and Randall B.J., Biol. Chem., 93:265–273, 1957.
  27. Menzyanova N.G., Algologia, 12(1):59–68, 2002.
  28. Micheletti E., Pereira S., Mannelli F. et al., Appl. Environ. Microbiol., 74(9):2797–2804, 2008. http://dx.doi.org/10.1128/AEM.02212-07
  29. Mimouni V., Ulmann L., Pasquet V. et al., Curr. Pharm. Biotechnol., 13(15):2733–2750, 2012. http://dx.doi.org/10.2174/138920112804724828
  30. Mohamed Z.A., Ecotoxicology, 17(6):504–516, 2008. http://dx.doi.org/10.1007/s10646-008-0204-2
  31. Paperi R., Micheletti E., and De Philippis R., J. Appl. Microbiol., 101:1351–1356, 2006. http://dx.doi.org/10.1111/j.1365-2672.2006.03021.x
  32. Roleda M.Y., Slocombe S.P., Leakey R.J. et al., Biores. Technol., 129:439–449, 2013. http://dx.doi.org/10.1016/j.biortech.2012.11.043
  33. Samorì G., Samorì C., Guerrini F., and Pistocchi R., Water Res., 47(2):791–801. 2013. http://dx.doi.org/10.1016/j.watres.2012.11.006
  34. Soeder C.J., Hydrobiolgia, 72:197–209, 1980. http://dx.doi.org/10.1007/BF00016247
  35. Soontornchaiboon W., Joo S.S., and Kim S.M., Biol. Pharm Bull., 35(7):1137–1144, 2012. http://dx.doi.org/10.1248/bpb.b12-00187
  36. Spirin A.S., Biokhimiya, 23:656–662, 1958.
  37. Tafresh A.H. and Shariat M., Microbiol. & Biotechnol., 22:1003–1006, 2006. http://dx.doi.org/10.1007/s11274-006-9145-1
  38. Yang Z. and Li J.J., Ying Yong Sheng Tai Xue Bao, 19(1):198–202, 2008.
  39. Yao C., Ai J., Cao X., Xue S., and Zhang W., Biores. Technol., 118:438–444, 2012. http://dx.doi.org/10.1016/j.biortech.2012.05.030