ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 10
Up
Algologia 2014, 24(4): 443–450
https://doi.org/10.15407/alg24.04.443
Physiology, Biochemistry, Biophysics

Photosynthetic properties of some free-living and lichenized green terrestrial algae

Polishchuk A.V., Voytsekhovich A.A.
Abstract

The photosynthetic properties of 4 strains of free-living green terrestrial algae (Diplosphaera chodatii, Parietochloris ovoideus, Myrmecia bisecta and Trentepohlia sp.) and 2 strains of green photobionts of lichens (Radiococcus signiensis and Trebouxia australis) were studied. As a result of our work the optimum light intensity for cultivating algae strains at a relative humidity of 45 % was found: for Trentepohlia it is ≤ 100 μE / (m2 ∙ s), Radiococcus and Trebouxia ≤ 200 μE / (m2 ∙ s), Parietochloris ≤ 400 μE / (m2 ∙ s), Diplosphaera and Myrmecia ≤ 800 μE / (m2 ∙ s). Besides, it was revealed that Trentepohlia sp., Radiococcus signiensis and Trebouxia australis are vulnerable to light, while M. bisecta, P. ovoideus and D. chodatii are well adapted to intensive illumination. However, the strains T. australis and D. chodatii in their groups stand high speed photochemical damage even under optimal light intensity.

Keywords: photosynthesis, NPQ, qI, light intensity, lichen photobionts, Trebouxia, Trentepohlia, Myrmecia, Diplosphaera, Radiococcus, Parietochloris, green algae, adaptation

Full text: PDF 257K

References
  1. Algae of Ukraine: Diversity, Nomenclature, Taxonomy, Ecology and Geography, Vol. 3. Chlorophyta, Eds P. Tsarenko, S. Wasser, E. Nevo, K.-G., A.R.A. Gantner Verlag, Ruggell, 2011.
  2. Ahmadjian V., The Lichen Symbiosis, John Wiley & Sons, Inc., New York, 1993.
  3. Beck A., Selektivität der Symbionten schwermetalltoleranter Flechten, Fischer GmbH, München, 2002.
  4. Brestic M. and Zivcak M., Molecular stress physiology of plants, Springer, Dordrecht, Pp. 87–131, 2013.
  5. Demmig-Adams B. and Adams W.W., Trends Plant Sci., 1:21–26, 1996.
  6. Ettl H. and Gärtner G. Syllabus der Boden-, Luft-, und Flechtenalgen, Gustav Fischer Verlag, Stuttgart, etc., 1995.
  7. Fernández-Marín B., Balaguer L., Esteban R. et al., J. Plant Physiol., 166:1734–1744, 2009.
  8. Fernández-Marín B., Becerril J.M., and García-Plazaola J.I., Planta, 231:1335–1342, 2010.
  9. Friedl T. and Büdel B., The Lichen Symbiosis, Cambridge Univ. Press, Cambridge, Pp. 9–26, 2008.
  10. Vojcehovich A.A., Fotobionty lishajnikov: proishozhdenie, raznoobrazie i vzaimo-otnoshenija s mikobiontom, Lumbert Acad. Publ., Saarbrücken, 2013.
  11. Kappen L. and Lange O.L., Lichenologist, 4:289–293, 1970.
  12. Karsten U. and Holzinger A., Microb. Ecol., 63:51–63, 2012.
  13. Krause G.H. and Jahns P., Chlorophyll a fluorescence: A signature of photosynthesis, Springer, Dordrecht, Pp. 464–495, 2004.
  14. Manrique E., Balaguer L., Barnes J., and Davison A.W., Bryologist, 164:161–195, 1989.
  15. Tschermak-Woess E., Plant Syst. and Evol., 164:161–195, 1989.
  16. Vojcehovich A.A. and Kashevarov G.P., Algologia, 20(3):287–299, 2010.
  17. Vojcehovich A.A., Mihajljuk T.I., and Darienko T.M., Algologia, 21(1):3–26, 2011.
  18. Voytsekhovich A., Dymytrova L., and Nadyeina O., Folia Cryptogam. Estonica, 48:135–148, 2011.