ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 10
Up
Algologia 2015, 25(1): 3–20
https://doi.org/10.15407/alg25.01.003
Physiology, Biochemistry, Biophysics

Diatom exopolysaccharides. A review

Shniukova E.I., Zolotareva E.K.
Abstract

Diatom exopolysaccharides (EPS) are bioactive components released into the environment. As an important component of marine phytoplankton, diatoms produce up to a quarter of the annual primary organic matter. The results of EPS studies highlighting the important role of diatom EPS in the global carbon cycle are analyzed. The main types of extracellular carbohydrates, monosaccharide composition of EPS, and dependence of their production on algal growth rate, light conditions and nutrient content in the environment are discussed.

Keywords: Bacillariophyta, exopolysaccharides, ecological role, chemical composition, production conditions

Full text: PDF 346K

References
  1. Alcoverro T., Conte E., and Mazzella L., J. Phycol., 36(6):1087–1095, 2000. https://doi.org/10.1046/j.1529-8817.2000.99193.x
  2. Bellinger J., Abdullahi A.S., Gretz M.R., and Underwood G.J.C., Aquat. Microbiol. Ecol., 38:169–180, 2005. https://doi.org/10.3354/ame038169
  3. de Brouwer, de Deckere, and Stal L.J., Estuar., Coast. and Shelf., 56(2):313–324, 2003.
  4. de Brouwer J.F.C., Stal L.J., and Mar. Ecol., Progr. Ser., 218(1):33–44, 2001. https://doi.org/10.3354/meps218033
  5. de Brouwer J.F.C. and Stal L.J., J. Phycol., 38:464–472, 2002. https://doi.org/10.1046/j.1529-8817.2002.01164.x
  6. Decho A.W., Oceanogr. Mar. Biol. Ann. Rev., 28:73–153, 1990.
  7. Edgar L.A. and Pickett-Heaps I.D., Protoplasma, 113:10–22, 1982. https://doi.org/10.1007/BF01283035
  8. Edgar L.A. and Pickett-Heaps I.D., Progr. Phycol. Res., 3:47–88, 1984.
  9. Fogg G.E., Bot. Mar., 6(1):3–14, 1983.
  10. Fogg G.E., Limnol. Oceanogr., 22(3):576–577, 1997. https://doi.org/10.4319/lo.1977.22.3.0576
  11. Gordon R., J. Theor. Biol., 126(4):419–436, 1987. https://doi.org/10.1016/S0022-5193(87)80149-2
  12. Guerrini F., Cangini M., Boni L., Trost P., and Pistocchi R., J. Phycol., 36(5):882–890, 2000. https://doi.org/10.1046/j.1529-8817.2000.99070.x
  13. Guzmán-Murillo M.A., López-Bolaños C.C., Ledesma-Verdejo T., Roldan-Libenson G., Cadena-Roa M.A., and Ascencio F., J. Appl. Phycol., 19(1):33–41, 2007. https://doi.org/10.1007/s10811-006-9108-9
  14. Higgins M.J., Crawford S.A., Mulvaney P., and Wetherbee R., Protistologia, 153:25–28, 2002. https://doi.org/10.1078/1434-4610-00080 https://www.ncbi.nlm.nih.gov/pubmed/12022272
  15. Hoagland K.D., Rosowski J.R., Gretz M.R., and Roemer S.C., J. Phycol., 29:537–566, 1993. https://doi.org/10.1111/j.0022-3646.1993.00537.x
  16. Kirchman D.L., Microbial Ecology of the Oceans, The 2nd ed., John Wiley & Sons, New York, 2008. https://doi.org/10.1002/9780470281840
  17. Lind J.L., Heimann K., Miller E.A. et al., Planta, 203:213–221, 1997. https://doi.org/10.1007/s004250050184 https://www.ncbi.nlm.nih.gov/pubmed/9362567
  18. Magaletti E., Urbani R., Sist P., Ferrari C.R., and Cicero A.M., Eur. J. Phycol., 39(2):133–142, 2004. https://doi.org/10.1080/0967026042000202118
  19. McConville M.J., Wetherbee R., and Bacic A. Protoplasma, 206:188–200, 1999. https://doi.org/10.1007/BF01279266
  20. Myklestad S.M., Sci. Total Environ., 165(1–3):155–164, 1995. https://doi.org/10.1016/0048-9697(95)04549-G
  21. Myklestad S.M. and Haug A., J. Exp. Mar. Biol. Ecol., 9:125–136, 1972. https://doi.org/10.1016/0022-0981(72)90041-X
  22. Myklestad S., Holm-Hansen O., Vårum K.M., and Volcani B.E., J. Plankt. Res., 11:763–774, 1989. https://doi.org/10.1093/plankt/11.4.763
  23. Nagai S., Imai. I. Hori Y. and Manabe T., J. Plankt. Res., 20(7):1417–1420, 1998. https://doi.org/10.1093/plankt/20.7.1417
  24. Nikolaou A.D. and Lekkas T.D., Acta Hydrochim. Hydrobiol., 29(2-3):63–77, 2001. https://doi.org/10.1002/1521-401X(200109)29:2/3%3C63::AID-AHEH63%3E3.0.CO;2-C
  25. Ordain F., Galois R., Barnard C. et al., Microbiol. Ecol., 45(3):237–251, 2003. https://doi.org/10.1007/s00248-002-2027-7 https://www.ncbi.nlm.nih.gov/pubmed/12658521
  26. Perkins R.G, Underwood G.J.C., Brotas V. et al., Mar. Ecol. Progr. Ser., 28:101–112, 2001. https://doi.org/10.3354/meps223101
  27. Perkins R.G., Paterso D.M., Sun H. et al., Cont. Shelf Res., 24(15):1623–1635, 2004. https://doi.org/10.1016/j.csr.2004.06.001
  28. Rainer M.W.A. and Fitznar H.P., Limnol. Oceanogr., 46(2):287–297, 2001. https://doi.org/10.4319/lo.2001.46.2.0287
  29. Santschi P.H., Balnois E., Wilkinson K. J. et al., Limnol. Oceanogr., 43(5):896–908, 1998. https://doi.org/10.4319/lo.1998.43.5.0896
  30. Smith D.J. and Underwood G.J.C., J. Phycol., 36(2):321–333, 2000. https://doi.org/10.1046/j.1529-8817.2000.99148.x
  31. Staats N., De Winder B., Stal L.J., and Mur L.R., Eur. J. Phycol., 34(2):161–169, 1999. https://doi.org/10.1080/09670269910001736212
  32. Staats N., Stal L.J., De Winder B., and Mur L.R., Mar. Ecol. Progr. Ser., 193:261–269, 2000. https://doi.org/10.3354/meps193261
  33. Underwood G.J.C.and Paterson D.M., Adv. Bot. Res., 40:184–240, 2003. https://doi.org/10.1016/S0065-2296(05)40005-1
  34. Underwood G.J.C., Boulcot M., Raines C.A., and Waldron K., J. Phycol., 40:293–304, 2004. https://doi.org/10.1111/j.1529-8817.2004.03076.x
  35. Urbani R., Magaletti E., Sist P., and Cicero A.M., Sci. Total Environ., 353(1-3) :300–306, 2005. https://doi.org/10.1016/j.scitotenv.2005.09.026 https://www.ncbi.nlm.nih.gov/pubmed/16223520
  36. Wang Y., Chert Y., Lavin C., and Gretz M.R., J. Phycol., 3:367–378, 2000. https://doi.org/10.1046/j.1529-8817.2000.99102.x
  37. Williams P.J.L., Mar. Microbiol. Food Webs., 4:175–206, 1990.
  38. Witvrouw M. and De Clercq E., Gen. Pharm., 29:497–511, 1997. https://doi.org/10.1016/S0306-3623(96)00563-0
  39. Wustman B.A., Gretz M.R. and Hoagland R.D., Plant Physiol., 113(4):1059–1069, 1997. https://doi.org/10.1104/pp.113.4.1059 https://www.ncbi.nlm.nih.gov/pubmed/12223660 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC158229