ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 2 of 8
Up
Algologia 2015, 25(2): 125–134
https://doi.org/10.15407/alg25.02.125
Physiology, Biochemistry, Biophysics

Biodegradation ability and physiological responses of cyanobacterium Leptolyngbya sp. ISC 25 under naphthalene treatment

B.A. Panah1,2, F. Najafi1, N. Soltani2, R.A. Kh. Nejad1, 3, S. Babaei1,2
Abstract

Cyanobacteria (Cyanoprokaryota) have gained a lot of attention in recent years because of their potential applications in biotechnology. In this study the cyanobacterium Leptolyngbya sp. ISC 25 was identified as tolerating and effectively degrading naphthalene as a toxic compound in the environment. The cyanobacterium was treated with different concentrations of naphthalene. Physiological responses such as survival, Chlorophyll a content, photosynthesis rate and ammonium excretion were investigated in logarithmic phase of growth curve. The biodegradation ability of the cyanobacterium was measured by GC and GC/MS analysis. Results indicated that chlorophyll a concentration decreased with naphthalene increasing and was approximately zero in the presence of 1 % naphthalene, Phycobiliproteins content enhanced up to 0.2 % of naphthalene, but at higher concentrations decreased significantly. Photosynthesis rate and ammonium excretion decreased in all treatments. Results of GC analysis confirmed the degradation of naphthalene by Leptolyngbya sp. ISC 25 in comparison with control (without the cyanobacterium). The results of GC/MS analysis identified the products of naphthalene degradation by Leptolyngbya sp. ISC 25. Totally lower concentrations of naphthalene is not lethal for cyanobacterium Leptolyngbya sp. and this strain can biodegrade naphthalene to 2(4H)-benzofuranone-tetrahydro-trimethyl mainly.

Keywords: ammonium excretion, biodegradation, chlorophyll a, Leptolyngbya, naphthalene, photosynthesis

Full text: PDF 415K

References
  1. Agbozu I. and Opuene K., South. Niger. Int. J. Environ Res., 3(1):117–120, 2009.
  2. Amotz A., Katz A., and Arvon M., Phycology, 18:529–537, 1982. https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  3. APHA-AWWA-WPCF. Standard Methods for the Examination of Water & Wastewater, 16 ed., APHA Amer. Publ. Health Assoc., Baltimore Maryland, 1985.
  4. Atlas R. and Bragg J., Microbial Biotechnol., 2(2):213–221, 2009. https://doi.org/10.1111/j.1751-7915.2008.00079.x https://www.ncbi.nlm.nih.gov/pubmed/21261915 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815841
  5. Borowitzka M.A. and Borowitzka L.J., Microalgal Biotechnology, Cambridge Univ. Press, Cambridge, 1988.
  6. Boussiba S., Algal biotechnology, Stadler, T. et al. (Eds), Elsevier Appl. Sci. Publ., London, 1988.
  7. Cerniglia C.E., Gibson D.T., and Van Baalen C., J. General Microbiol., 116(2):495–500, 1980a.
  8. Cerniglia C.E., Van Baalen C., and Gibson D.T., J. General Microbiol., 116(2):485–494, 1980b.
  9. Dodds W.K., Appl. and Environ. Microbiol., 55(4):882–886, 1989. https://www.ncbi.nlm.nih.gov/pubmed/16347893 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184218
  10. Ellis B., Plant Sci. Lett., 8(3):213–216, 1977. https://doi.org/10.1016/0304-4211(77)90183-3
  11. Gaur J. and Singh A., Bull. Environ. Cont. and Toxicol., 44(3):494–500, 1990. https://doi.org/10.1007/BF01701235 https://www.ncbi.nlm.nih.gov/pubmed/2109645
  12. Hasan R., Sorkhoh N., Bader D., and Radwan S., Appl. Microbiol. and Biotechnol., 41(5):615–619, 1994. https://doi.org/10.1007/BF00178499
  13. Kabli S., Effect of Crude Oil and Naphthalene on The Evolution of Oxygen by Three Species of Marine Algae, J. King Abdulaziz Univ. Ser. Meteorology, Environ. and Arid Land Agricult. Sci., 9:137–144, 1998.
  14. Kong Q., Zhu L., and Shen X., J. Environ. Sci., 23(2):307–314, 2011. https://doi.org/10.1016/S1001-0742(10)60407-X
  15. Kumar M.S., Muralitharan G., and Thajuddin N., Biotechnol. Lett., 31(12):1863–1866, 2009. https://doi.org/10.1007/s10529-009-0085-3 https://www.ncbi.nlm.nih.gov/pubmed/19633815
  16. Leganés F., Sánchez-Maeso E., and Fernández-Valiente E., Plant and Cell Physiol., 28(3):529–533, 1987.
  17. Marker A., Freshwat. Biol., 2(4):361–385, 2006. https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  18. Menzie C.A., Potocki B.B., and Santodonato J., Exposure to carcinogenic PAHs in the environment, Environ. Sci. and Technol., 26(7):1278–1284, 1992. https://doi.org/10.1021/es00031a002
  19. Mimuro M., Lipschultz C., and Gantt E., Biochim. Biophys. Acta, 852(1):126–132, 1986. https://doi.org/10.1016/0005-2728(86)90065-4
  20. Narro M.L., Cerniglia C.E., Van Baalen C., and Gibson D.T., Appl. Environ. Microbiol., 58(4):1360–1363, 1992. https://www.ncbi.nlm.nih.gov/pubmed/1599253 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC195598
  21. Nwuche C. and Ugoji E., Int. J. Environ Sci. Technol., 5(3):409–414, 2008. https://doi.org/10.1007/BF03326036
  22. Ouzounidou G., Biol. Plant., 37(1):7–78, 1995. https://doi.org/10.1007/BF02913000
  23. Soltani N., Baftechi L., Dezfulian M., Shokravi S., and Alnajar N., Int. J. Environ. Res., 6(2):481–492, 2012.
  24. Soto C., Hellebust J., and Hutchinson T., Can. J. Bot., 53(2):118–126, 1975. https://doi.org/10.1139/b75-018
  25. Sundaram S. and Soumya K., Amer. J. Plant. Physiol., 6(1):1–16, 2011. https://doi.org/10.3923/ajpp.2011.1.16
  26. Yamanaka G. and Glazer A.N., Arch. Microbiol., 130(1):23–30, 1981. https://doi.org/10.1007/BF00527067
  27. Zhang X.W., Shen S.C., Hidajat K., Kawi S., Yu L.E., and Simon N.K., Catalysis Lett., 96(1):87–96, 2004. https://doi.org/10.1023/B:CATL.0000029535.71343.7f