ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 10 of 10
Up
Algologia 2015, 25(3): 330–351
https://doi.org/10.15407/alg25.03.330
Surveys. History of Algology

Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Pt I. Auxins, abscisic acid, ethylene

E.A. Romanenko1, I.V. Kosakovskaya1, P.A. Romanenko2
Abstract

The literature data about the features of biosynthesis, chemical structure, interaction and impact on the growth and development of microalgae of different classes of phytohormones have been analyzed and summarized. The information about the divisions and species of algae with measured auxins, abscisic acid (ABA) and ethylene is provided. Specific features of regulation of microalgae biomass production, cell division processes, resistance to abiotic stressors by exogenous auxins, ABA and ethylene are discussed. The main directions and tasks for further microalgae phytohormones researches, perspectives of their using in the development of biotechnological approaches in the agricultural industry, medical and pharmaceutical research are analyzed.

Keywords: microalgae, auxins, abscisic acid, ethylene, growth, resistance, stress

Full text: PDF 288K

References
  1. Achard P., Vriezen W.H., Van Der Straeten D., and Harberd N.P., Plant Cell, 15:2816–2825, 2003. https://doi.org/10.1105/tpc.015685 https://www.ncbi.nlm.nih.gov/pubmed/14615596 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC282807
  2. Addicott F.T., Carns H.R., Lyon J.L., Smith O.E., and McMeans J.L., Régulateurs Naturels de la Croissance Végétale, C.N.R.S., Paris, pp. 687–703, 1964.
  3. Addicott F.T., Lyon J.L., Ohkuima K., Thiessen W.E., Carns H.R., Smith O.E., Cornforth J.W., Milborrow B.V., Ryback G., and Wareing P.F., Science, 159:1493, 1968. https://doi.org/10.1126/science.159.3822.1493 https://www.ncbi.nlm.nih.gov/pubmed/5732498
  4. Ahmed M., Stal L.J., and Hasnain S., J. Microbiol. Biotechnol., 20(9):1259–1265, 2010. https://doi.org/10.4014/jmb.1004.04033 https://www.ncbi.nlm.nih.gov/pubmed/20890089
  5. Arendarchuk V.V., Indolsoderzhashchie veshchestva i rost sinezelenykh vodorosley, vyzyvayushchikh «tsvetenie» vody: Avtoref. dis. kand. biol. nauk, Kiev, 1978. [Rus.]
  6. Baroli I. and Niyogi K.K., Phil. Trans. Roy. Soc., London B: Biol. Sci., 355:1385–1394, 2000. https://doi.org/10.1098/rstb.2000.0700 https://www.ncbi.nlm.nih.gov/pubmed/11127993 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692874
  7. Beck E.H., Fettig S., Knake C., Hartig K., and Bhattarai T., J. Biosci., 32(3):501–510, 2007. https://doi.org/10.1007/s12038-007-0049-5 https://www.ncbi.nlm.nih.gov/pubmed/17536169
  8. Blyum Ya.B., Krasilenko Yu.A., and Emets A.I., Fiziol. rast., 59(4):557–573, 2012.
  9. Bopp-Buhler M.L., Wabra P., Hartung W., and Gimmler H., Cryptogam. Bot., 2(3):192–200, 1991.
  10. Buggeln R.G. and Craigie J.S., Planta, 97(2):173–178, 1971. https://doi.org/10.1007/BF00386764 https://www.ncbi.nlm.nih.gov/pubmed/24493226
  11. Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., and Pinto E., Comp. Biochem. Physiol. C. Pharmacol., 146(1-2):60–78, 2007.
  12. Cornforth J.W., Milborrow B.V., and Ryback G., Nature, 206:715, 1965b. https://doi.org/10.1038/206715a0
  13. Cornforth J.W., Milborrow B.V., Ryback G., and Wareing P.F., Nature, 205:1269–1270, 1965a. https://doi.org/10.1038/2051269b0
  14. Cowan A.K. and Rose P.D., Plant Physiol., 97:798–803, 1991. https://doi.org/10.1104/pp.97.2.798 https://www.ncbi.nlm.nih.gov/pubmed/16668469 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1081077
  15. Darwin C. and Darwin F., The Power of Movement in Plants, D. Appl. and Comp., New York, 1881.
  16. Davies P.J., Plant Hormones. Biosynthesis, Signal Transduction, Action, Kluwer, Dordrecht, pp. 16–35, 2004.
  17. Del Pozo J.C., Lopez Mataz M.A., Ramirez-Parra E., and Gutierrez C., Physiol. Plant, 123:173–183, 2005. https://doi.org/10.1111/j.1399-3054.2004.00420.x
  18. Denny F.E., Bot. Gaz., 77:322–329, 1924. https://doi.org/10.1086/333319
  19. Dodd I. and Beveridge C., J. Exp. Bot., 57(1):1–4, 2006. https://doi.org/10.1093/jxb/erj021 https://www.ncbi.nlm.nih.gov/pubmed/16303826
  20. Driessche Th.V., Kevers C., Collet M., and Gaspar Th., J. Plant Phys., 133(5):635–639, 1988. https://doi.org/10.1016/S0176-1617(88)80021-X
  21. Gamalero E. and Glick B.R., Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate, Springer, New York, pp. 395–412, 2012. https://doi.org/10.1007/978-1-4614-0815-4_18
  22. Gane R., Nature, 134:1008–1008, 1934. https://doi.org/10.1038/1341008a0
  23. Ghassemian M., Nambara E., Cutler S., Kawaide H., Kamiya Y., and McCourt P., Plant Cell, 12(7):1117–1126, 2000. https://doi.org/10.1105/tpc.12.7.1117 https://www.ncbi.nlm.nih.gov/pubmed/10899978 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149053
  24. Grotbeck L. and Vance B.D., J. Phycol., 8(3):272–275, 1972.
  25. Guiry M.D. and Guiry G.M., AlgaeBase. World-wide electron. publ., Nat. Univ. of Ireland, Galway, 2015, http://www.algaebase.org
  26. Gusta L.V., Trischuk R., and Weiser C.J., J. Plant Growth Regul., 24:308–318, 2005. https://doi.org/10.1007/s00344-005-0079-x
  27. Hall M.A., Moshkov I.E, Novikova G.V., Mur L.A., and Smath A.R., Biol. Rev. Camb. Philos. Soc., 76(1):103–128. 2001. https://doi.org/10.1017/S1464793100005649 https://www.ncbi.nlm.nih.gov/pubmed/11325051
  28. Hansen H. and Dörffling K., J. Exp. Bot., 50(339):1599–1605, 1999. https://doi.org/10.1093/jxb/50.339.1599
  29. Hartung W., Funct. Plant Biol., 37(9):806–812, 2010. https://doi.org/10.1071/FP10058
  30. Hashtroudi M.S., Ghassempour A., Riahi H., Shariatmadari Z., and Khanjir M., J. Appl. Phycol., 25(2):379–386, 2013. https://doi.org/10.1007/s10811-012-9872-7
  31. Hemberg T., Acta Horti Berg., 14:133–220, 1947.
  32. Hemberg T., Physiol. Plant., 2:37–44, 1949. https://doi.org/10.1111/j.1399-3054.1949.tb07646.x
  33. Hirsch R., Hartung W., and Gimmler H., Bot. Acta, 102(4):326–334, 1989. https://doi.org/10.1111/j.1438-8677.1989.tb00113.x
  34. http://www.flanderstoday.eu/current-affairs/place-sun (A place in the sun – Algae is the crop of the future, according to researchers in Geel, Flanders Today, 31 October 2012)
  35. Huang T. and Chow T., Bull. Bot. Acad. Sin., 25:81–86, 1984.
  36. Hussain A. and Boney A., New Phytol., 72(2):403–410, l973.
  37. Jackson M.B., Ann. Bot., 101(2):229–248, 2008. https://doi.org/10.1093/aob/mcm237 https://www.ncbi.nlm.nih.gov/pubmed/17956854 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711016
  38. Jäger K., Bartók T., Ördög V., and Barnabás B., South. Afr. J. Bot., 76:511–516, 2010. https://doi.org/10.1016/j.sajb.2010.03.009
  39. Jennings R.C., New Phytol., 68(3):683–688, 1969. https://doi.org/10.1111/j.1469-8137.1969.tb06472.x
  40. Khan A.N. and Khan M.I.R., J. Plant Biochem. Physiol., 2(2):245–247, 2014. https://doi.org/10.4172/2329-9029.1000e124
  41. Kholodnyy N.G., Zhurn. rus. botan. ob-va, 13:191, 1928.
  42. Kingman A.R., Moore J., Bot. Mar., 25:149–153, 1982. https://doi.org/10.1515/botm.1982.25.4.149
  43. Kiseleva A.A., Tarakhovskaya E.R., and Shishova M.F., Fiziol. rast., 59(5):643–659, 2012.
  44. Kobayashi M., Hirai N., Kurimura Y., Ohigashi H., and Tsuji Y., Plant Growth Regul., 22(2):79–85, 1997. https://doi.org/10.1023/A:1005862809711
  45. Kolupaev Yu.E. and Karpets Yu.V., Formirovanie adaptivnykh reaktsiy rasteniy na deystvie abioticheskikh stressov, Osnova, Kiev, 2010. [Rus.]
  46. Kosakivska I.V., Fiziologo-biokhimichni osnovi adaptatsiyi roslin do stresiv, Stal, Kyiv, 2003. [Ukr.]
  47. Li H. and Guo H., J. Plant Growth Reg., 26(2):106–117, 2007. https://doi.org/10.1007/s00344-007-0015-3
  48. Liu W.-C. and Carns H.R., Science, 134:384–385, 1961. https://doi.org/10.1126/science.134.3476.384 https://www.ncbi.nlm.nih.gov/pubmed/17829477
  49. Maillard P., Thepenier C., and Gudin C., J. Appl. Phycol., 5(1):93–98, 1993. https://doi.org/10.1007/BF02182426
  50. Maršálek B., Zahradníčková H., and Hronková M., J. Plant Physiol., 139(4):506–508, 1992b. https://doi.org/10.1016/S0176-1617(11)80503-1
  51. Maršálek B., Zahradníčková H., and Hronková M., Z. Naturforsch., 47:701–704, 1992a.
  52. Mazur H., Knop A., and Synak R., J. Appl. Phycol., 13(1):35–42, 2001. https://doi.org/10.1023/A:1008199409953
  53. Misra S. and Kausik B.D., Proc. Indian Nat. Sci. Acad., B55:499–504, 1989.
  54. Nazarenko L.V., Akyev A.Ya., and Semenenko V.E., Fiziol. rast., 41(2):214–219, 1994.
  55. Nejad A.R. and van Meeteren U., J. Exp. Bot., 58(3):627–636, 2007. https://doi.org/10.1093/jxb/erl234 https://www.ncbi.nlm.nih.gov/pubmed/17175553
  56. Neljubov D.N., Beih. Bot. Zentralbl., 10:128–138, 1901.
  57. Ohkuma K., Lyon J.L. Addicott F.T., and Smith O.E., Science, 142:1592–1593, 1963. https://doi.org/10.1126/science.142.3599.1592 https://www.ncbi.nlm.nih.gov/pubmed/17741533
  58. Pierik R., Sasidharan R., and Voesenek L., J. Plant Growth Reg., 26:188–200, 2007. https://doi.org/10.1007/s00344-006-0124-4
  59. Pierik R., Tholen D., Poorter H., Visser E., and Voesenek L., Trends Plant Sci., 11(4):178–182, 2006. https://doi.org/10.1016/j.tplants.2006.02.006 https://www.ncbi.nlm.nih.gov/pubmed/16531097
  60. Piotrowska-Niczyporuk A., and Bajguz A., Plant Growth Reg., 73:57–66, 2014. https://doi.org/10.1007/s10725-013-9867-7
  61. Plettner I., Steinke M., and Malin G., Plant Cell Environ., 28:1136–1145, 2005. https://doi.org/10.1111/j.1365-3040.2005.01351.x
  62. Priyadarshani I. and Rath B., J. Algal Biomass Utln., 3(4):89–100, 2012.
  63. Rakitin V.Yu., Prudnikova O.N., Rakitina T.Ya., Karyagin V.V., Vlasov P.V., Novikova G.V., and Moshkov I.E., Fiziol. rast., 56(2):163–169, 2009.
  64. Sabbatini M.R., Arguelo J.A., Fernandez O.A., and Bottini R.A., Aquat. Bot., 28:189–194, 1987. https://doi.org/10.1016/0304-3770(87)90040-4
  65. Sakai M., Ogawa T., Matsuoka M., and Fukuda H., J. Ferment. Bioeng., 84:434–443, 1997. https://doi.org/10.1016/S0922-338X(97)82004-1
  66. Sarmad J., Shariati M., and Haghjou M.M., Amer.-Eurasian J. Agric. & Environ. Sci., 2(5):559–564, 2007.
  67. Schiewer U., Krienke H., and Libbert E., Plants, 76(1):52–64, 1967. https://doi.org/10.1007/BF00387422 https://www.ncbi.nlm.nih.gov/pubmed/24549379
  68. Schiewer U., Planta, 74(4):313–323, 1967a. https://doi.org/10.1007/BF00389090 https://www.ncbi.nlm.nih.gov/pubmed/24549976
  69. Schiewer U., Planta, 75(2):152–160, 1967b. https://doi.org/10.1007/BF00387130 https://www.ncbi.nlm.nih.gov/pubmed/24550049
  70. Shanab S.M.M., Saker M.M., and Abdel-Rahman M.H.M., Arab. J. Biotech., 6(2):297–312, 2003.
  71. Shinozaki K. and Yamaguchi-Shinozaki K., J. Exp. Bot., 58(2):221–227, 2007. https://doi.org/10.1093/jxb/erl164 https://www.ncbi.nlm.nih.gov/pubmed/17075077
  72. Stirk W.A. and van Staden J., J. Appl. Phycol., 8:503–508, 1997. https://doi.org/10.1007/BF02186328
  73. Stirk W.A., Bálint P., Tarkowská D., Novák O., Maróti G., Ljung K., Turečková V., Strnad M., Ördög V., and van Staden J., Plant Physiol. Biochem., 79:66–76, 2014. https://doi.org/10.1016/j.plaphy.2014.03.005 https://www.ncbi.nlm.nih.gov/pubmed/24685518
  74. Stirk W.A., Ördög V., Novák O.,Rolčík J., Strnad M., Bálint P., and van Staden J., J. Phycol., 49:459–467, 2013. https://doi.org/10.1111/jpy.12061 https://www.ncbi.nlm.nih.gov/pubmed/27007035
  75. Stirk W.A., Ördög V., van Staden J., and Jäger K., J. Appl. Physiol., 14(3):215–221, 2002.
  76. Takahama K., Matsuoka M., Nagahama K., and Ogawa T., J. Biosci Bioeng., 95(3):302–305, 2003. https://doi.org/10.1016/S1389-1723(03)80034-8
  77. Tauts M.I. and Semenenko V.E., DAN SSSR, 198(4):970–973, 1971.
  78. Tietz A. and Kasprik W., Biochem. Physiol. Pflanzen., 181(4):269–274, 1986. https://doi.org/10.1016/S0015-3796(86)80093-2
  79. Tietz A., Ruttkowski U., Köhler R., and Kasprik W., Biochem. Physiol. Pflanz., 184:259–266, 1989. https://doi.org/10.1016/S0015-3796(89)80011-3
  80. Tillberg J.E., Physiol. Plant., 23:647–653, 1970. https://doi.org/10.1111/j.1399-3054.1970.tb06457.x
  81. Tominaga N., Takahata M., and Tominaga H., Hydrobiology, 267:163–168, 1993. https://doi.org/10.1007/BF00018798
  82. Ullich W.R. and Kunz G., Plant Sci. Lett., 37:9–14, 1984. https://doi.org/10.1016/0304-4211(84)90195-0
  83. Ungerer J., Tao L., Davis M., Ghirardi M., Maness P.-C., and Yu J., Energy Environ. Sci., 5:8998–9006, 2012. https://doi.org/10.1039/c2ee22555g
  84. Vance B.D., J. Plant Growth Reg., 5:169–173, 1987. https://doi.org/10.1007/BF02087185
  85. Vandenbussche F. and van der Straeten D., J. Plant Growth Regul., 26:178–187, 2007. https://doi.org/10.1007/s00344-007-9001-z
  86. Varalakshmi P. and Malliga P., Int. J. Sci. Res. Publ. (IJSRP), 2(3):1–15, 2012.
  87. Wang K.L., Li H., and Ecker J.R., Plant Cell, 14(Suppl.):131–151, 2002.
  88. Wareing P.F., Eagles C.F., and Robinson P.M., Régulateurs Naturels de la Croissance Végétale, C.N.R.S., Paris, pp. 377–386, 1964.
  89. Went F.W. and Thimann K.V., Phytohormones, Macmillan Comp., New York, 1937.
  90. Went F.W., Experimental control of plant growth, Chron. Bot. Co., Waltham, Mass., 1957.
  91. Weyers J.D.B. and Paterson N.W., New Phytol., 152:375–407, 2001. https://doi.org/10.1046/j.0028-646X.2001.00281.x
  92. Wilkinson S. and Davies W., Plant Cell Environ., 32:949–959, 2009. https://doi.org/10.1111/j.1365-3040.2009.01970.x https://www.ncbi.nlm.nih.gov/pubmed/19302171
  93. Wilkinson S. and Davies W.J., Plant Cell Environ., 25(1):195–210, 2002. https://doi.org/10.1046/j.0016-8025.2001.00824.x https://www.ncbi.nlm.nih.gov/pubmed/11841663
  94. Yoshida K., Igarashi E., Mukai M., Hirata K., and Miyamoto K., Plant Cell Environ., 26:451–457, 2003. https://doi.org/10.1046/j.1365-3040.2003.00976.x
  95. Zahradníčková H., Maršálek B., and Polišenská M., J. Chrom. A, 555(1-2):239–245, 1991.
  96. Zheng-Yi X., Yun-Joo Y., and Inhwan H., Abscisic acid: Metabolism, Transport and Signaling, Springer, Dordrecht, pp. 77–87, 2014.