ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 8
Up
Algologia 2016, 26(1): 3–17
https://doi.org/10.15407/alg26.01.003
General Problems of Algology

Evolution of the circadian clock system in cyanobacteria: a genomic perspective

V.Ya. Dvornyk
Abstract

Cyanobacteria are the first prokaryotes shown to have an endogenous circadian clock, an ability to sustain life processes with an approximate daily periodicity. During its long and complex evolutionary history, the circadian system of cyanobacteria has underwent several major changes, which resulted in its structural diversification. Three main types of the system, which possess different sets of elements, have been identified so far. There is evidence that these differences may be associated with some functional modifications. Macroevolution of the circadian system has been governed by many factors, including multiple duplications, gene recruitment and de novo gene origin, domain accretion and fusion, and selection. Rapid accumulation of genomic data provides new possibilities for comprehensive comparative analyses and more accurate reconstruction of an evolutionary scenario for this finely tuned regulatory mechanism of cyanobacteria.

Keywords: cyanobacteria, circadian system, evolution, genomics

Full text: PDF 375K

References
  1. Axmann I.M., Duhring U., Seeliger L., Arnold A., Vanselow J.T., Kramer A., and Wilde A., J. Bacteriol., 2009, 191(17):5342-5347.
  2. Axmann I.M., Hertel S., Wiegard A., Dorrich A.K, and Wilde A., Mar. Genom., 2014, 14:3-16.
  3. Baca I., Sprockett D., and Dvornyk V., J. Mol. Evol., 2010, 70(5):453-465.
  4. Crosthwaite S.K., Loros J.J., and Dunlap J.C., Cell., 1995, 81(7):1003-1012.
  5. DiRuggiero J., Brown J.R., Bogert A.P., and Robb F.T., J. Mol. Evol., 1999, 49(4):474-484.
  6. Ditty J.L., Williams S.B., and Golden S.S., Annu. Rev. Genet., 2003, 37:513-543.
  7. Dunlap J.C., Loros J.J., and DeCoursey P.J., Chronobiology: Biological Timekeeping, Sinauer Assoc. Inc., Sunderland, MA, 2004.
  8. Dvornyk V., J. Mol. Evol., 2005, 60(1):105-112.
  9. Dvornyk V., Microbiology, 2006, 152(Pt 1):75-84.
  10. Dvornyk V., The Circadian Clock Gear in Cyanobacteria: Assembled by Evolution in Bacterial Circadian Programs, Springer-Verlag, Berlin; Heidelberg, 2009, pp. 241-258.
  11. Dvornyk V., Deng, H.W., and Nevo E., Mol. Biol. Evol., 2004, 21(8):1468-1476.
  12. Dvornyk V. and Jahan A.S., Mol. Biol. Evol., 2012, 29(12):3899-3907.
  13. Dvornyk V. and Knudsen B., Genetica, 2005, 124(2, 3):247-254.
  14. Dvornyk V. and Nevo E., J. Mol. Evol., 2004, 58(3):341-347.
  15. Dvornyk V., Vinogradova O., and Nevo E., Proc. Natl. Acad. Sci, USA, 2002, 99(4):2082-2087.http://dx.doi.org/10.1073/pnas.261699498
  16. Dvornyk V., Vinogradova O., and Nevo E., Proc. Natl. Acad. Sci, USA, 2003, 100(5):2495-2500.http://dx.doi.org/10.1073/pnas.0130099100
  17. Espinosa J., Boyd J.S., Cantos R., Salinas P., Golden S.S., and Contreras A., Proc. Natl. Acad. Sci. USA, 2015, 112(7):2198-2203.http://dx.doi.org/10.1073/pnas.1424632112
  18. Gu X., Mol. Biol. Evol., 1999, 16(12):1664-1674.
  19. Gu X., Mol. Biol. Evol., 2001, 18(4):453-464.
  20. Hanaoka M., Takai N., Hosokawa N., Fujiwara M., Akimoto Y., Kobori N., Iwasaki H., Kondo T., and Tanaka K., J. Biol. Chem., 2012, 287(31):26321-26327.
  21. Holtman C.K., Chen Y., Sandoval P., Gonzales A., Nalty M.S., Thomas T.L., Youderian P., and Golden S.S., DNA Res., 2005, 12(2):103-115.
  22. Hosokawa N., Kushige H., and Iwasaki H., Proc. Natl. Acad. Sci. USA, 2013, 110(35):14486-14491.http://dx.doi.org/10.1073/pnas.1302243110
  23. Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C.R., Tanabe A., Golden S.S., Johnson C.H., and Kondo T., Science, 1998, 281(5382):1519-1523.http://dx.doi.org/10.1126/science.281.5382.1519
  24. Ivleva N.B., Bramlett M.R., Lindahl P.A., and Golden S.S., EMBO J., 2005, 24(6):1202-1210.
  25. Iwasaki H., Williams S.B., Kitayama Y., Ishiura M., Golden S.S., and Kondo T., Cell., 2000, 101(2):223-233.
  26. Johnson C.H. and Golden S.S., Annu. Rev. Microbiol., 1999, 53:389-409.
  27. Kageyama H., Kondo T., and Iwasaki H., J. Biol. Chem., 2003, 278(4):2388-2395.
  28. Katayama M., Kondo T., Xiong J., and Golden S.S., J. Bacteriol., 2003, 185(4):1415-1422.
  29. Katayama M., Tsinoremas N.F., Kondo T., and Golden S.S., J. Bacteriol., 1999, 181(11):3516-3524.
  30. Kimura M., The Neutral Theory of Molecular Evolution, Cambridge Univ. Press, Cambridge, 1983.
  31. Komárek J., Kaštovský J., Mareš J., and Johansen J.R., Preslia, 2014, 86(4):295-235.
  32. Kondo T., Mori T., Lebedeva N.V., Aoki S., Ishiura M., and Golden S.S., Science, 1997, 275(5297):224-227.http://dx.doi.org/10.1126/science.275.5297.224
  33. Kucho K., Okamoto K., Tsuchiya Y., Nomura S., Nango M., Kanehisa M., and Ishiura M., J. Bacteriol., 2005, 187(6):2190-2199.
  34. Kutsuna S., Kondo T., Aoki S., and Ishiura M., J. Bacteriol., 1998, 180(8):2167-2174.
  35. Kutsuna S., Kondo T., Ikegami H., Uzumaki T., Katayama M., and Ishiura M., J. Bacteriol., 2007, 189(21):7690-7696.
  36. Leipe D.D., Aravind L., Grishin N.V., and Koonin E.V., Genome Res., 2000, 10(1):5-16.
  37. Meyer E., Leonard N.J., Bhat B., Stubbe J., and Smith J.M., Biochemistry, 1992, 31(21):5022-5032.http://dx.doi.org/10.1021/bi00136a016
  38. Mutsuda M., Michel K.P., Zhang X., Montgomery B.L., and Golden S.S., J. Biol. Chem., 2003, 278(21):19102-19110.
  39. Nair U., Ditty J.L., Min H., and Golden S.S., J. Bacteriol., 2002, 184(13):3530-3538.
  40. Nakamura Y., Kaneko T., Sato S., Mimuro M., Miyashita H., Tsuchiya T., Sasamoto S., Watanabe A., Kawashima K., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Nakazaki N., Shimpo S., Takeuchi C., Yamada M., and Tabata S., DNA Res., 2003, 10(4):137-145.
  41. Ng K.W., Pointing S.B., and Dvornyk V., Appl. Environ. Microbiol., 2013, 79(5):1516-1522.
  42. Pattanayek R., Williams D.R., Pattanayek S., Xu Y., Mori T., Johnson C.H., Stewart P.L., and Egli M., EMBO J., 2006, 25(9):2017-2028.
  43. Pattanayek R., Yadagiri K.K., Ohi M.D., and Egli M., Cell Cycle, 2013, 12(5):810-817.http://dx.doi.org/10.4161/cc.23757
  44. Pittendrigh C.S., Annu. Rev. Physiol., 1993, 55:16-54.
  45. Roca A.I. and Cox M.M., Crit. Rev. Biochem. Mol. Biol., 1990, 25(6):415-456.
  46. Schmitz O., Katayama M., Williams S.B., Kondo T., and Golden S.S., Science, 2000, 289(5480):765-768.http://dx.doi.org/10.1126/science.289.5480.765
  47. Schopf J.W. and Packer B.M., Science, 1987, 237:70-73.
  48. Shalapyonok A., Olson R.J., and Shalapyonok L.S., Appl. Environ. Microbiol., 1998, 64(3):1066-1069.
  49. Takai N., Nakajima M., Oyama T., Kito R., Sugita C., Sugita M., Kondo T., and Iwasaki H., Proc. Natl. Acad. Sci. USA, 2006, 103(32):12109-12114.http://dx.doi.org/10.1073/pnas.0602955103
  50. Taniguchi Y., Yamaguchi A., Hijikata A., Iwasaki H., Kamagata K., Ishiura M., Go M., and Kondo T., FEBS Lett., 2001, 496(2, 3):86-90.
  51. Tomita J., Nakajima M., Kondo T., and Iwasaki H., Science, 2005, 307(5707):251-254.http://dx.doi.org/10.1126/science.1102540
  52. Tomitani A., Knoll A.H., Cavanaugh C.M., and Ohno T., Proc. Natl. Acad. Sci. USA, 2006, 103(14):5442-5447.http://dx.doi.org/10.1073/pnas.0600999103
  53. Tsinoremas N.F., Ishiura M., Kondo T., Tanaka K., Takahashi H., and Johnson C.H., EMBO J., 1996, 15:2488-2495.
  54. Vakonakis I. and LiWang A.C., Proc. Natl. Acad. Sci. USA, 2004, 101(30):10925-10930.
  55. Watanabe W., Sampei G., Aiba A., and Mizobuchi K., J. Bacteriol., 1989, 171(1):198-204.
  56. Whitton B.A., Survival and Dormancy of Algae in Survival and Dormancy of Microorganisms, John Wiley, New York, 1987, pp. 109-167.
  57. Wiegard A., Dorrich A.K., Deinzer H.T., Beck C., Wilde A., Holtzendorff J., and Axmann I.M., Microbiology, 2013, 159(Pt 5):948-958.
  58. Woelfle M.A., Ouyang Y., Phanvijhitsiri K., and Johnson C.H., Curr. Biol., 2004, 14(16): 1481-1486.