ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 3 of 8
Up
Algologia 2016, 26(1): 33–45
https://doi.org/10.15407/alg26.01.033
Physiology, Biochemistry, Biophysics

Features of cell metabolism of Chlamydomonas reinhardtii CC-124 wild strain [137c] under mixotrophic and phototrophic cultivation

O.V. Sytar1, O.P. Olkhovych1, O.V. Karaushu1, R. Storandt2, P. Waldeck2, N.Yu. Taran1
Abstract

The features of cell metabolism were studied in Chlamydomonas reinhardtii CC-124 wild strain [137c]. It is a mutant for genes nit1 and nit2, characterized by insensitivity to the nitrate medium under phototrophic and mixotrophic cultivation. It was found that, in terms of chlorophyll and sulpholipid content in the cells of Ch. reinhardtii, phototrophic conditions of cultivation were the best. Total content of amino acids in Ch. reinhardtii had increased 1.5 times during the transition from photo- to mixotrophic nutrition. Among the studied amino acids, five are essential: valine, tryptophan, phenylalanine, methionine, and leucine. Under phototrophic conditions, quantitative content of essential amino acids increased nearly twice. The ratio of the amount of non-essential to essential amino acids during phototrophic nutrition equaled 3.27, while mixotrophic – 2.56. This indicates an increase of essential amino acids content and a better-balanced composition of amino acids under mixotrophic conditions of cultivation. The possibility of regulation of specific metabolites of Ch. reinhardtii CC-124 wild strain [137c] production by means of certain cultivation conditions is discussed.

Keywords: Chlamydomonas reinhardtii CC-124 wild strain [137c], biotechnlogy of algae, amino acids, sulpholipids, protein, photo- and mixotrophic cultivation

Full text: PDF 241K

References
  1. Athenstaedt K. and Daum G., Cell. and Mol. Life Sci., 2006, 63:1355-1369.
  2. Endo T. and Asada K., Plant Cell Physiol., 1996, 37:551-555.
  3. Fouchard S., Hemschemeier A., Caruana A., Pruvost J., Legrand J., Happe T., Peltier G., and Cournac L., Appl. Environ. Microbiol., 2005, 71(10):6199-6205.
  4. Gilmore S., Schelle M., Holsclaw C., Leigh C., Jain M., Cox J., Leary J., and Bertozzi C., ACS Chem. Biol., 2012, 7:863-870.
  5. Gorman D.S. and Levine R.P., Proc. Nat. Acad. Sci. USA, 1965, 54:1665-1669.
  6. Gornall A.G., Bardawill C.J., and David M.M., J. Biol. Chem., 1949, 177(2):751-766.
  7. Hanson A.D. and Roje S., Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52:119-137.
  8. Harris E.H., A Comprehensive Guide to Biology and Laboratory Use, Acad. Press, San Diego, 1989, 780 p.
  9. Heifetz P.B., Förster B., Osmond C.B., Giles L.J., and Boynton J.E., Plant Physiol., 2000, 122(4):1439-1446.
  10. Hemschemeier A., Fouchard S., Cournac L., Peltier G., and Happe T., Planta, 2008, 227(2):397-407.http://dx.doi.org/10.1007/s00425-007-0626-8
  11. Ho C.L. and Saito K., Amino Acids., 2001, 20:243-259.
  12. Johnson X. and Alric J., Eucaryot. Cell, 2013, 12:776-793.
  13. Kean E., J. Lipid Res., 1968, 9:319-329.
  14. Kirk R. Gustafson, John H., Cardellina I.I., Richard W. Fuller, Owen S. Weislow, Rebecca F. Kiser, Kenneth M. Snader, Gregory M.L. Patterson, Michael R., and Boyd, JNCI J. Natl. Canc. Inst., 1989, 81:1254-1258.
  15. Merchant S.S., Kropat J., Liu B., Shaw J., and Warakanont J., Curr. Opin. Biotech., 2012, 23:352-363.
  16. Mikhaylova S.V., Baydakova G.V., Boukina A.M., Boukina T.M., Shechter O.V., Ilina E.S., and Zakharova E.Y., J. Inherit. Metab. Dis., 2004, 27(1):3-39.
  17. Muñoz-Blanco J., Hidalgo-Martínez J., and Cárdenas J., Planta, 1990, 182(2):194-198.
  18. Mushak P.A., Ukr. Bot. J., 2007, 64(1):132-139.
  19. Okanenko A., Taran N., and Kosyk O., Sulfosoderzhaschiye lipidy (Sulfurcontaining plant lipids), Avega, Kiev, 2011, 92 p. (In Rus.)
  20. Ovchynnikova Yu.A., Novye metody analiza aminovikh kislot, peptidov i proteinov (New methods of analysis of amino acids, peptides and proteins), Mir Publ., Moscow, 1974, 154 p. (In Rus.)
  21. Palsdottir H. and Hunte C., Biochim. et Biophys. Acta, 2004, 1666:2-18.
  22. Perez-Garcia O., Escalante F.M.E., de-Bashan L.E., and Bashan Y., Water Res., 2011, 45: 11-36.
  23. Pinto T.S., Malcata F.X., Arrabaça J.D., Silva J.M., Spreitzer R.J., and Esqunvel M.G., Appl. Microbiol. Biotechnol., 2013, 97(12):35-43.
  24. Pröschold T., Harris E., and Coleman A., Genetics, 2005, 170(4):1601-1610.
  25. Ramanan R., Kim B.-H., Cho D.-H., Ko S.-R., Oh H.-M., and Kim H.-S., FEBS Lett., 2013, 587(4):37-377.
  26. Renberg L., Johansson A.I., Shutova T., Stenlund H., Aksmann A., Raven J.A., Gardeström P., Moritzand T., and Samuelsson G., Plant Physiol., 2010, 154:187-196.
  27. Roach T., Sedoud A., and Krieger-Liszkay A., Biochim. et Biophys. Acta, 2013, 1827(10): 1183-1190.
  28. Sato N., J. Plant Res., 2004, 117:495-505.
  29. Selstam E. and Campbell D., Arch. Microbiol., 1996, 166:132-135.
  30. Siaut M., Cuiné S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylidès C., Li-Beisson Y., and Peltier G., BMC Biotechnol., 2011, 11:7-21. http://dx.doi.org/10.1186/1472-6750-11-7
  31. Singh H., Shukla M.R., Chary K.V.R., and Rao B.J., Acetate and Bicarbonate Assimilation and Metabolite Formation in Chlamydomonas reinhardtii: A 13C-NMR Study, PLoS ONE, 2014, 9(9): e106457. http://dx.doi.org/10.1371/journal.pone.0106457
  32. Smyth R.D. and Ebersold W.T., Genet. Res., 1985, 46:133-148.
  33. Stepanov S. and Zolotareva E., Appl. Phycol., 2014, 12:18.
  34. Sueoka N., Proc. Natl. Acad. Sci. USA, 1960, 46:83-91.
  35. Sugimoto K., Tsuzuki M., and Sato N., New Phytol., 2010, 185:676-686.
  36. Sweetlove L.J., Beard K.F.M., Nunes-Nesi A., Fernie A.R., and Ratcliffe R.G., Trends Plant Sci., 2010, 15:462-470.
  37. Waffenschmidt S., Woessner J.P., Beer K., and Goodenough U.W., Plant Cell, 1993, 5: 809-820.
  38. Wan M., Liu P., Xia J., Rosenberg J., Oyler G., Betenbaugh M., Nie Z., and Qiu G., Appl. Microbiol. Biotechnol., 2011, 91:835-844.
  39. Zolotareva E.K., Shnyukova E.I., and Podorvanov V.V., Int. J. Algae, 2010, 12(3):199-220.http://dx.doi.org/10.1615/InterJAlgae.v12.i3.10