ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 6 of 6
Up
Algologia 2016, 26(2): 203–229
https://doi.org/10.15407/alg26.02.203
Surveys. History of Algology

Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Pt II. Cytokinins and gibberellins

Romanenko E.A.1, Kosakovskaya I.V.1, Romanenko P.A. 2
Abstract

The literature data about the features of the biosynthesis, qualitative and quantitative diversity, involvement in the regulation of physiological and biochemical processes, the prospects for use of microalgae cytokinins (CKs) and gibberellins (GA) in biotechnological developments have been analyzed and summarized. 45 microalgae species, belonging to 5 divisions, were revealed to have 37 forms of CKs. The qualitative composition and quantitative content of microalgae CKs are shown to be strongly affected by light conditions and the presence of an energy source in the culture medium. The main biological functions of microalgae CKs include stimulation of cell division, the activation of growth processes, increased photosynthetic activity. Microalgae cytokinin protective properties that provide protection for cell division and the photosynthetic apparatus under stress conditions were found. The problem of microalgae cytokinins biosynthesis is still controversial and their interaction with other phytohormone classes is little-investigated. Gibberellins were discovered in 31 microalgae species, 20 hormone isoforms were identified. Microalgae GA physiological effects are similar to those of higher plants and exhibit in a lag phase reduction and stimulation of cell growth and division, biomass increase, accumulation of proteins and pigments, reduction of heavy metals effects.

Keywords: microalgae, cytokinins, gibberellins, growth, stress

Full text: PDF 404K

References
  1. Adair O.V. and Miller M.W., J. Phycol., 1982, 18:587–589.
  2. Auer C.A., Plant Growth Regul., 1997, 23:17–32.
  3. Bendana F.E. and Fried M., Life Sci., 1967, 6(10):1023–1033.
  4. Bentley-Mowat J.A. and Reid S.M., Bot. Mar., 1969, 12:185–199.
  5. Bentley-Mowat J.A. and Reid S.M., Ann. Bot., 1968, 32(1):23–32.
  6. Booth E., Proc. Int. Seaweed Symp., 1966, 5:349–357.
  7. Bralczyk J., Wielgat D., Wasilewska-Dabrowska L.D., and Kleczkowski K., Plant Sci. Lett., 1978, 12:265–272.
  8. Buczek J., Kubik-Dorosz G., and Tatkowska E., Acta Soc. Bot. Pol., 1975, 44(3):415–421.
  9. Burkiewicz K., Acta Physiol. Plant., 1987, 9(4):211–217.
  10. Burkiewicz K., Bot. Mar., 1987, 30:63–69.
  11. Cardozo K.H., Guaratini T., Barros M.P., FalcãoV.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., and Pinto E., Comp. Biochem. Physiol. C. Pharm., 2007, 146(1–2):60–78.
  12. Chandler J.W., J. Plant Growth Regul., 2011, 30:242–254.
  13. Conrad H., Saltman P., and Eppley R., Nature, 1959, 184:556–557.
  14. Curtis P.J. and Cross B.E., Chem. Ind., 1954, 35:1066.
  15. Czerpak R. and Bajguz A., Acta Soc. Bot. Pol., 1997, 66:41–46.
  16. Czerpak R., Krotke A., and Mical A.H., Pol. Arch. Hydrobiol., 1999, 46:71–82.
  17. Davière J.M. and Achard P., Develop., 2013, 140:1147–1151.
  18. De Nys R., Jameson P.E., Chin N., Brown M.T., and Sanderson K.J., Bot. Mar., 1990, 34:465–468.
  19. Evans W.K. and Sorokin C., Life Sci., 1971, 10:1227–1235.
  20. Falkowska M., Pietryczuk A., Piotrowska A., Bajguz A., Grygoruk A., and Czerpak R., Pol. J. Environ. Stud., 2011, 20(1):53–59.
  21. Guiry M.D. and Guiry G.M., AlgaeBase. World-wide electron. publ., Nat. Univ. of Ireland, Galway, 2015, http://www.algaebase.org
  22. Gupta A.B. and Agarwal P.R., Ann. Bot., 1973, 37(4):737–741.
  23. Ha S., Vankova R., Yamaguchi-ShinozakiK., Shinozaki K., and Tran L.S., Trends Plant Sci., 2012, 17:172–179.
  24. Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., and Sakakibara H., J. Exp. Bot., 2008, 59:75–83.
  25. http://www.flanderstoday.eu/current-affairs/place-sun (A place in the sun – Algae is the crop of the future, according to researchers in Geel), Flanders Today, 31 Oct. 2012.
  26. Hussain A. and Boney A.D., Bot. Mar., 1971, 14:17–21.
  27. Hussain A., Krischke M., Roitsch Th., and Hasnain Sh., Curr. Microbiol., 2010, 61:361–369.
  28. Jennings R.C., Broughton W.J., and McComb A.J., Phytochemistry, 1972, 11:1937–1943.
  29. Jirásková D., Poulíčková A., Novák O., Sedláková K., Hradecká V., and Strnad M., J. Phycol., 2009, 45:108–118.
  30. Johnston R., Limnol. Oceanogr., 1963, 8(2):270–275.
  31. Kaftan D., Meszaros T., Whitmarsh J., and Nedbal L., Plant Physiol., 1999, 120:433–441.
  32. Karol K.G., McCourt R.M., Cimino M.T., and Delwiche Ch.F., Science, 2001, 294:2351–2353.
  33. Kato J., Purves W.K., and Pninney B.O., Nature, 1962, 196:687–688.
  34. Kim W.K. and Greulach V.A., Plant Physiol., 1961, 36:14.
  35. Kiseleva A.A., Tarakhovskaya E.R., and Shishova M.F., Fiziol. rast., 2012, 59(5):643–659. (In Rus.)
  36. Kulaeva O.N. and Kuznetsov V.V., Fiziol. rast., 2002, 49(4):626–640. (In Rus.)
  37. Kurosawa E., Trans. Nat. Hist. Soc. Formosa, 1926, 16:213–227.
  38. Letham D.S., Life Sci., 1963, 2:569–573.
  39. Letham D.S., Shannon J.S., and McDonald I.R., Proc. Chem. Soc., London, 1964:230–231.
  40. Lu Y., Jiang P., Liu Sh., Gan Q., Cui H., and Qin S., Biores. Technol., 2010, 101:6468–6474.
  41. MacMillan J., Seaton J.C., and Suter P.J., Tetrahedron, 1960, 11(1–2):60–66.
  42. Mauney J.K., Hillman W.S., Miller C.O., Skoog F., Clayton R.A., and Strong F.M., Physiol. Plant, 1952, 5:485–497.
  43. Melnikov S.S., Manankina E.E., and Budakova E.A., Algologia, 1991, 1(1):90–96. (In Rus.)
  44. Miller C.O., Skoog F., Okomura F.S., von Saltza M.H., and Strong F.M., J. Amer. Chem. Soc., 1956, 78: 1345–1350.
  45. Miller C.O., Skoog F., von Saltza M.H., and Strong F.M., J. Amer. Chem. Soc., 1955, 77:1329–1334.
  46. Mohan M. and Mukerji K.G., Phykos, 1978, 18(2):73–82.
  47. Mok D.W. and Mok M.C., Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52:89–118.
  48. Mowat J.A., Bot. Mar., 1965, 8(1):149–155.
  49. Murray J.D., Karas B.J., Sato S., Tabata S., Amyot L., and Szczyglowski K., Science, 2007, 315:101–104.
  50. Naylor J., Sander G., and Skoog F., Physiol. Plant., 1954, 7:25–29.
  51. Noble A., Kisiala A., Galer A., Clysdale D., and Emery R.J.N., Eur. J. Phycol., 2014, 49(2):244–254.
  52. Olszewski N., Sun T., and Gubler F., Plant Cell, 2002, 14:61–80.
  53. Ördög V. and Molnar Z., Biol. Plant, 1994, 34(Suppl.):34–38.
  54. Ördög V., Stirk W., van Staden J., Novák O., and Strnad M., J. Phycol., 2004, 40(1):88–95.
  55. Pan X., Chang F., Kang L., Liu Y., Li G., and Li D., J. Plant Physiol., 2008, 165:1691–1697.
  56. Park W., Yoo G., Moon M., Kim Ch. W., Choi Y., and Yang J., Appl. Biochem. Biotechnol., 2013, 171:1128–1142.
  57. Peng J. and Harberd N.P., Curr. Opin. Plant Biol., 2002, 5:376–381.
  58. Peters R.J., Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches, Springer, New York, 2013, pp. 233–249.
  59. Piotrowska A. and Czerpak R., Acta Physiol. Plant, 2009, 31:573–585.
  60. Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., and Godlewska-Żyłkiewicz B., Plant Physiol. Biochem., 2012, 52:52–65.
  61. Priyadarshani I. and Rath B., J. Algal Biomass Utln., 2012, 3(4):89–100.
  62. Radley M., Nature, 1961, 191:684–685.
  63. Radley M., Nature, 1956, 178:1070–1071.
  64. Ramamurthy V.D. and Seshadri R., Proc. Ind. Acad. Sci., 1966, 64(3):146–151.
  65. Romanenko E.A., Kosakovskaya I.V., and Romanenko P.A., Algologia, 2015, 25(3):330–351.
  66. Romanov G.A., Fiziol. rast., 2009, 56(2):295–319.
  67. Sakakibara H., Annu. Rev. Plant Biol., 2006, 57:431–49.
  68. Skoog F., Strong F.M., and Miller C.O., Science, 1965, 148:532–533.
  69. Sponsel V.M. and Hedden P., Plant Hormones. Biosynthesis, Signal Transduction, Action, Springer, Dordrecht, 2010, pp. 63–94.
  70. Stirk W.A., Ördög V., and van Staden J., J. Phycol., 1999, 35:89–92.
  71. Stirk W.A., Ördög V., van Staden J., and Jäger K., J. Appl. Physiol., 2002, 14(3):215–221.
  72. Stirk W.A., Novák O., Strnad M., and van Staden J., Plant Growth Regul., 2003, 41:13–24.
  73. Stirk W.A. and van Staden J., Plant Growth Regul., 2010, 62:101–116.
  74. Stirk W.A., van Staden J., Novák O., Doležal K., Strnad M., Dobrev P.I., Sipos G., Ördög V., and Bálint P., J. Phycol., 2011, 47:291–301.
  75. Stirk W.A., Bálint P., Tarkowská D., Novák O., Strnad M., Ördög V., and van Staden J., Plant Physiol. Biochem., 2013a, 70:348–353.
  76. Stirk W.A., Ördög V., Novák O., Rolčík J., Strnad M., Bálint P., and van Staden J., J. Phycol., 2013b, 49:459–467.
  77. Stirk W.A., Tarkowská D., Turečová V., Strand M., and van Staden J., J. Appl. Phycol., 2014a, 26(1):561–567.
  78. Stirk W.A., Bálint P., Tarkowská D., Novák O., Maróti G., Ljung K., Turečková V., Strnad M., Ördög V., and van Staden J., Plant Physiol. Biochem., 2014b, 79:66–76.
  79. Tamiya H., Morimura Y., and Yokota M., Arch. Microbiol., 1962, 42:4–16.
  80. Tarakhovskaya E.R., Maslov Yu.I., and Shishova M.F., Russ. J. Plant Physiol., 2007, 54(2):186–194.
  81. Tatkowska E. and Buczek J., Acta Soc. Bot. Pol., 1980, 49(3):211–220.
  82. Van Staden J. and Breen C., Plant Sci. Let., 1973, 1:325–330.
  83. Vance B.D., J. Plant Growth Regul., 1987, 5(3):169–173.
  84. Weiss D. and Ori N., Plant Physiol., 2007, 144:1240–1246.
  85. Werner T. and Schmülling T., Curr. Opin. Plant Biol., 2009, 12:527–538.
  86. Yabuta T. and Sumiki Y., J. Agr. Chem. Soc. Jap., 1938, 14:15–26.
  87. Yamaguchi S., Annu. Rev. Plant Biol., 2008, 59:225–251.
  88. Zalabák D., Pospíšilová H., Smehilová M., Mrízová K., Frébort I., and Galuszka P., Biotechnol. Adv., 2013, 31:97–117.
  89. Zhang W., Yamane H., Takahashi N., Chapman D.J., and Phinney B.O., Phytochemistry, 1989, 28(2):337–338.