ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 8
Up
Algologia 2016, 26(3): 237–247
https://doi.org/10.15407/alg26.03.237
Physiology, Biochemistry, Biophysics

Antioxidant system of Spirulina platensis (Nordst.) Geitler under the LED lighting of different spectral compositions

Ryabushko V.I., Zheleznova S.N., Gevorgiz R.G., Bobko N.I., Lelekov A.S.
Abstract

The proposed medium was developed specially for intensive culture of the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin. The averages of nitrogen, phosphorus, and silicon demand for the culture were calculated using data from the chemical analysis of the microalgal biomass. Growth limitation by nitrogen provoked agglutination of the microalgal cells. High concentrations of iron did not inhibit growth of C. closterium. Organic nitrogen present in the medium can be due to biosynthesis of exometabolites. During the stationary growth phase, the total and organic nitrogen in the medium were evaluated 28 mg·L-1 and 17.8 mg·L-1, correspondingly. The average loss of nitrogen in the culture was estimated at 10%. The maximal dry biomass harvested from the diatom was 4.6 g·L-1 and the productivity – 1 g·L-1·d-1. The new medium allows growing dense cultures of C. closterium with a larger biomass and therefore a proportionally larger yield of valuable biologically active substances, e.g., polyunsaturated fatty acids and carotenoids, primarily fucoxanthin.

Keywords: diatom Cylindrotheca closterium, cultivation, nutritive medium, macro- and microelements

Full text: PDF 233K

References
  1. Affan A., Heo S.-J., Jeon Y.-J., and Lee J.-B., J. Phycol., 2009, 45: 1405–1415. http://dx.doi.org/10.1111/j.1529-8817.2009.00763.x
  2. Bertrand M., Photosynth. Res., 2010, 106: 89–102. http://dx.doi.org/10.1007/s11120-010-9589-x
  3. Biswas H. and Bandyopadhyaya D., Adv. Oceanogr. Limnol., 2013, 4(1): 20–42. http://dx.doi.org/10.4081/aiol.2013.5335
  4. Brouwer J.F.C. and Stal L.J., J. Phycol., 2002, 38: 464–472. http://dx.doi.org/10.1046/j.1529-8817.2002.01164.x
  5. Bumbak F., Cook S., Zachleder V., Hauser S., and Kovar K., Appl. Microbiol. Biotechnol., 2011, 91: 31–46. http://dx.doi.org/10.1007/s00253-011-3311-6
  6. de la Cuesta J.L. and Manley S.L., Limnol. Oceanogr., 2009, 54: 1653–1664. http://dx.doi.org/10.4319/lo.2009.54.5.1653
  7. Dobrovolskiy A.D. and Zalogin B.S., Morya SSSR [Seas of the USSR], Univ. Press, Moscow, 1982, 192 p. (In Rus.)
  8. Dunstan G.A., Volkman J.K., Barrett S.M., Leroil J.-M., and Jeffrey S.W., Phytochemistry, 1994, 35: 155–161. http://dx.doi.org/10.1016/S0031-9422(00)90525-9
  9. Gorbunova S.Yu., Borovkov A.B., and Trenkenshu R.P., Algologia, 2011, 21(3): 374–384.
  10. Gulllard R. and Ryther J., Can. J. Microbiol., 1962, 8: 229–239. http://dx.doi.org/10.1139/m62-029
  11. Ketchum B.H., Ann. Rev. Plant. Physiol., 1954, 29: 54–74.
  12. Kingston M.B., J. North. Carolina Acad. Sci., 2009, 125: 138–142.
  13. Kuznetsov E.D. and Semenenko V.E., Upravlyaemyi biosintez [The operated biosynthesis], Nauka Press, Moscow, 1966, pp. 105–110. (Rus.)
  14. Lebeau T. and Robert J.-M., Appl. Microbiol. Biotechnol., 2003, 60: 612–623. http://dx.doi.org/10.1007/s00253-002-1176-4
  15. Levich A.P., Revkova N.V., and Bulgakov N.G., Ekologicheskiy prognoz [Ecological forecast], Univ. Press, Moscow, 1986, pp. 132–139. (Rus.)
  16. Metod IP 470/03, Opredelenie alyuminiya, kremniya, vanadiya, nikelya, zheleza, kaltsiya, tsinka i natriya v ostatochnykh toplivakh ozoleniem, splavleniem i atomno-absorbtsionnoy spektrometriey [Definition of aluminum, silicon, vanadium, nickel, iron, calcium, zinc and sodium in residual fuels a combustion, alloyage and nuclear and absorbing spectrometry], Sb. metodik IP, 2003, 12 p.
  17. Metody gidrokhimicheskikh issledovaniy osnovnykh biogennykh elementov [Methods of hydrochemical researches of the basic biogenous elements], VNIRO, Moscow, 1988, 119 p. (Rus.)
  18. Peng J., Yuan J.-P., Wu C.-F., and Wang J.-H., Mar. Drugs., 2011, 9: 1806–1828. http://dx.doi.org/10.3390/md9101806
  19. Pert S.Dzh., Osnovy kultivirovaniya mikroorganizmov i kletok [Bases of cultivation of microorganisms and cells], Mir Press, Moscow, 1978, 261 p. (Rus.)
  20. Serrazanetti G.P., Folicaldi A., Guerrini F., Monti G., Pistocchi R., and Boni L., Clim. Res., 2006, 31: 145–150. http://dx.doi.org/10.3354/cr031145
  21. Sharlo G., Metody analiticheskoy khimii. Polnyi analiz neorganicheskoy khimii [Methods of analytical chemistry. Full analysis of inorganic chemistry], Khimiya Publ., Moscow, 1965, 350 p. (Rus.)
  22. Staats N., de Winder B., Stal L.J., and Mur L.R., Eur. J. Phycol., 1999, 34: 161–169. http://dx.doi.org/10.1080/09670269910001736212
  23. Takaichi S., Mar. Drugs., 2011, 9: 1101–1108. http://dx.doi.org/10.3390/md9061101
  24. Tamiya H., Ann. Rev. Plant. Physiol., 1957, 8: 309–348. http://dx.doi.org/10.1146/annurev.pp.08.060157.001521
  25. Trenkenshu R.P., Kinetika substratzavisimykh reaktsiy pri razlichnoy organizatsii metabolicheskikh sistem [Kinetics the substratzavisimykh of reactions at various organization of metabolic systems], EKOSI-Gidrofiz. Press, Sevastopol, 2005, 89 p. (Rus.)
  26. Trenkenshu R.P. and Lelekov A.S., Ekol. morya, 2005, 70: 53–61.
  27. Zheleznova S.N. and Gevorgiz R.G., Vopr. sovrem. algol., 2014, 5(1). URL: http://algology.ru/474