ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 3 of 8
Up
Algologia 2017, 27(1): 22–44
https://doi.org/10.15407/alg27.01.022
Physiology, Biochemistry, Biophysics

Ecological role of exopolysaccharides of Bacillariophyta: A review

Shnyukova E.I., Zolotareva E.K.
Abstract

The review deals with the role of Bacillariophyta in the formation of biofilms, the microbial communities immersed in matrix of sticky mucus secreted by them into the extracellular space and consisting of a complex of polymeric substances. We discuss the ecological function of biofilms in coastal ecosystems and estuarine areas, and the role of diatom exudates in the ecology of cells, inhabiting marine sediments and being an important source of carbohydrate components. More than half of the organic carbon incoming the ocean depths, a significant portion of which are soluble organic compounds, is a product of Bacillariophyta photosynthesis. Depending on external conditions and motility, diatoms can release into the environment substantial amounts of polymeric substances, mainly exopolysaccharides (EPS). One of the main ecological functions of EPS in aquatic ecosystems is bio-stabilization of sedimentary material, providing preservation of the structure of the intertidal zones subject to erosion.

Keywords: Bacillariophyta, exopolysaccharides, a role of EPS is in ecosystems, EPS of biofilms, photosynthesis, symbiotic association of bacteria and microalgae

Full text: PDF (Rus) 298K

References
  1. Alcoverro T., Conte E., and Mazzella L., J. Phycol., 2000, 36(6): 1087–1095. https://doi.org/10.1046/j.1529-8817.2000.99193.x
  2. Amon R.M.W., Fitznar H.-P., and Benner R., Limnol. Oceanogr., 2001, 46(2): 287–297. https://doi.org/10.4319/lo.2001.46.2.0287
  3. Andersen T.J., Microtidal Mudflats Estuarine, Coast. and Shelf Sci., 2001, 53(1): 1–12. https://doi.org/10.1006/ecss.2001.0790
  4. Bellinger J., Abdullahi A.S., Gretz M.R., and Underwood G.J.C., Aquat. Microbiol. Ecol., 2005, 38: 169–180. https://doi.org/10.3354/ame038169
  5. Biddanda B. and Benner R., Limnol. Oceanogr., 1997, 42: 506–518. https://doi.org/10.4319/lo.1997.42.3.0506
  6. Biokhimiya sinezelenykh vodorosley [Biochemistry of blue-green algae], K.M. Sytnik (Ed.), Nauk. dumka Press, Kiev, 1978, 261 p. (Rus.)
  7. Bruckner C.G., Bahulikar R., Rahalkar M., Schink B., and Kroth P.G., Appl. Environ. Microbiol., 2008, 74: 7740–7749. https://doi.org/10.1128/AEM.01399-08 https://www.ncbi.nlm.nih.gov/pubmed/18931294 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607161
  8. Carlson C.A., Ducklow H.W., Hansell D.A., and Smith W.O., Limnol. Oceanogr., 1998, 43: 375–386. https://doi.org/10.4319/lo.1998.43.3.0375
  9. Chow A.T., Gao S., and Dahlgren R.A., J. Water Supply: Res. and Technol., 2005, 54(8): 475–507.
  10. de Brouwer J.F.C., Neu T.R., and Stal L.J., On the function of secretion of extracellular polymeric substances by benthic diatoms and their role in intertidal mudflats: Functioning of Microphytobenthos in Estuaries: Proc. Colloquium, Amsterdam, 2006, Roy. Netherlands Acad. Arts and Sci., pp. 45–61.
  11. de Brouwer J.F.C. and Stal L.J., Mar. Ecol. Prog. Ser., 2001, 218(1): 33–44. https://doi.org/10.3354/meps218033
  12. Debenay J.P., Jouanneau J.M., Sylvestre F., Weber O., and Guiral D., J. Coast. Res., 2007, 23(6): 1431–1442. https://doi.org/10.2112/04-0299.1
  13. Decho A.W., Continent. Shelf Res., 2000, 20(10–11): 1257–1273. https://doi.org/10.1016/S0278-4343(00)00022-4
  14. Decho A.W., Oceanogr. Mar. Biol. Annu. Rev., 1990, 28: 73–153.
  15. Decho A.W. and Lopez G.R., Limnol. Oceanogr., 1993, 38(8): 1633–1645. https://doi.org/10.4319/lo.1993.38.8.1633
  16. Fang Y., Al-Assaf S., Phillips G.O., Nishinari K., Funami T. Williams P.A., and Li L., Carbohydrate Polim., 2008, 72(2): 334–341. https://doi.org/10.1016/j.carbpol.2007.08.021
  17. Flemming H.C. and Wingender J., Water Sci. Technol., 2001, 43: 1–8. https://www.ncbi.nlm.nih.gov/pubmed/11381954
  18. Frølund B., Palmgren R., Keiding K., and Nielsen P.H., Water Res., 1996, 30(8): 1749–1758. https://doi.org/10.1016/0043-1354(95)00323-1
  19. Goto N., Mitanura O., and Teral H., J. Exp. Mar. Biol. Ecol., 2001, 257(1): 73–86. https://doi.org/10.1016/S0022-0981(00)00329-4
  20. Granum E., Kirkvold S., and Myklestad S.M., Mar. Ecol. Prog. Ser., 2002, 242(1): 83–94. https://doi.org/10.3354/meps242083
  21. Grossart H.P., Czub G., and Simon M., Environ. Microbiol., 2006, 8: 1074–1084. https://doi.org/10.1111/j.1462-2920.2006.00999.x https://www.ncbi.nlm.nih.gov/pubmed/16689728
  22. Grossart H.P., Levold F., Allgaier M., Simon M., and Brinkhoff T., Environ. Microbiol., 2005, 7: 860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x https://www.ncbi.nlm.nih.gov/pubmed/15892705
  23. Guerrini F., Cangini M., Boni L., Trost P., and Pistocchi R., J. Phycol., 2000, 36(5): 882–890. https://doi.org/10.1046/j.1529-8817.2000.99070.x
  24. Haese R.R., Murray E.J., Smith C.S., Clementson L., and Heggie D.T., Limnol. Oceanogr., 2007, 52(6): 2686–2700. https://doi.org/10.4319/lo.2007.52.6.2686
  25. Haynes K., Hofmann T.A., Smith C.J., Ball A.S., Underwood G.J., and Osborn A.M., Appl. Environ. Microbiol., 2007, 73: 6112–6124. https://doi.org/10.1128/AEM.00551-07 https://www.ncbi.nlm.nih.gov/pubmed/17675437 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075028
  26. Heip C.H.R., Goosen N.K., Herman P.M.J., Kromkamp J.C., Middelburg J.J., and Soetaeri K.E.R., Mar. Biol. Annu. Rev., 1995, 33: 1–149.
  27. Hoagland K.D., Rosowski J.R., Gretz M.R., and Roemer S.C., J. Phycol., 1993, 29(5): 537–566. https://doi.org/10.1111/j.0022-3646.1993.00537.x
  28. Hofmann T., Hanlon A.R.M., Taylor J.D., Ball A.S., Osborn A.M., and Underwood G.J., Mar. Ecol. Prog. Ser., 2009, 379: 45–58. https://doi.org/10.3354/meps07875
  29. Jesus B., Perkins R. G., Consalvey M., Brotas V., and Paterson D.M., Mar. Ecol. Prog. Ser., 2006, 315: 55–66. https://doi.org/10.3354/meps315055
  30. Ignatiades L. and Fogg G.E. Studies on the factors affecting the release of organic matter by Sceletonema costatum (Greville) Cleve in culture, J. Mar. Biol. Assoc. U.K., 1973, 53(04): 937–956. https://doi.org/10.1017/S0025315400022591
  31. Kirchman D.L., Microbial Ecology of the Oceans, 2nd ed., John Wiley and Sons, New York, 2010, 512 p.
  32. Lind J.L., Heimann K., Miller E.A., van Vliet C., Hoogengraad N.J., and Wetherbee R., Planta, 1997, 203(2): 213–221. https://doi.org/10.1007/s004250050184 https://www.ncbi.nlm.nih.gov/pubmed/9362567
  33. Lubarsky H.V., Hubas C., and Chocholek M., The Stabilisation Potential of Individual and Mixed Assemblages of Natural Bacteria and Microalgae Published: November 2, 2010. doi: 10.1371/journal.pone.0013794 https://doi.org/10.1371/journal.pone.0013794
  34. Magaletti E., Urbani R., Sist P., Ferrari C.R., and Cicero A.M., Eur. J. Phycol., 2004, 39(2): 133–142. https://doi.org/10.1080/0967026042000202118
  35. Mague T.H., Friberg E, Hughes D.J., and Morris I., Limnol. Oceanogr., 1980, 25(2): 262–279. https://doi.org/10.4319/lo.1980.25.2.0262
  36. McLusky D.S. and Elliott M., The Estuarine ecosystem: ecology, threats and management. Ed. 3, Univ. Press, Oxford, 2004, 214 p. https://doi.org/10.1093/acprof:oso/9780198525080.001.0001
  37. Myklestad S., J. Exp. Mar. Biol. Ecol., 1977, 29: 161–179. https://doi.org/10.1016/0022-0981(77)90046-6
  38. Myklestad S., Holm-Hansen O., and Vårum K.M., J. Plankton Res., 1989, 11: 763–774. https://doi.org/10.1093/plankt/11.4.763
  39. Myklestad S.M., The handbook of environmental chemistry [D], Marine chemistry, Springer Verlag, Berlin, 2000, pp. 111–148.
  40. Myklestad S.M. and Swift E., Eur. J. Phycol., 1998, 33: 333–336. https://doi.org/10.1080/09670269810001736823
  41. Myklestad S., J. Exp. Mar. Biol. Ecol., 1974, 15: 261–274. https://doi.org/10.1016/0022-0981(74)90049-5
  42. Orvain F., Galois R., Barnard C., Sylvestre A., Blanchard G., and Sauriau P.G., Microbiol. Ecol., 2003, 45(3): 237–251. https://doi.org/10.1007/s00248-002-2027-7 https://www.ncbi.nlm.nih.gov/pubmed/12658521
  43. Paterson D.M., Limnolog. Oceanogr., 1989, 34(1): 223–234. https://doi.org/10.4319/lo.1989.34.1.0223
  44. Perkins R.G., Underwood G.J.C., Brotas V., Snow G.C., Jesus B., and Ribeiro L., Mar. Ecol. Prog. Ser., 2001, 223: 101–112. https://doi.org/10.3354/meps223101
  45. Raszka A., Chorvatova M., and Wanner J., CLEAN-Soil, Air, Water, 2006, 34(5): 411–424.
  46. Shniukova E.I. and Zolotareva E.K., Int. J. Algae, 2002, 4(2): 86–98. https://doi.org/10.1615/InterJAlgae.v4.i2.70
  47. Shnyukova E.I. and Zolotareva E.K., Int. J. Algae, 2015, 17(1): 50–67. https://doi.org/10.1615/InterJAlgae.v17.i1.50
  48. Shnyukova E.I., Algologia, 2002, 12(1): 34–48.
  49. Shnyukova E.I. and Romanenko V.M., Algologia, 1999, 9(2): 162–163.
  50. Shnyukova E.I. and Zolotareva E.K., Algologia, 2015, 25(1): 1–20.
  51. Shnyukova E.I. and Zolotarova O.K., Visn. NAN Ukrainy, 2010, 4: 10–20.
  52. Smith D.J. and Underwood G.J.C., J. Phycol., 2000, 36(2): 321–333. https://doi.org/10.1046/j.1529-8817.2000.99148.x
  53. Sondergaard M., Williams P.J. le B., Cauwet G., Riemann B., Robinson C., Terzic S., Woodward EE., and Worm J., Limnol. Oceanogr., 2000, 45: 1097–1111.
  54. Spears B.M., Saunders J.E., Davidson I., and Paterson D.M., Mar. Freshwat. Res., 2008, 59(4): 313–321. https://doi.org/10.1071/MF07164
  55. Staats N., De Winder B., Stal L.J., and Mur L., Eur. J. Phycol., 1999, 34(2): 161–169. https://doi.org/10.1080/09670269910001736212
  56. Stal L.J., Ecol. Engineer., 2010, 36(2): 236–245. https://doi.org/10.1016/j.ecoleng.2008.12.032
  57. Stal L.J., Geomicrobiol. J., 2003, 20(5): 463–478. https://doi.org/10.1080/713851126
  58. Stepanov S.S. and Zolotareva E.K., J. Appll. Phycol., 2015, 27(4): 1509–1516. https://doi.org/10.1007/s10811-014-0445-9
  59. Stepanov S.S. and Zolotareva E.K., Int. J. Algae, 2011, 21(2): 178–190.
  60. Stoodley P., Sauer K., Davies D.G., and Costerton J.W., Annu. Rev. Microbiol., 2002, 56: 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705 https://www.ncbi.nlm.nih.gov/pubmed/12142477
  61. Svetličić V., Żutić V., Radić T.M., Pleticapić G., Zimmermann A.H., and Urbani R., Mar. Drugs., 2011, 9(4): 666–679. https://doi.org/10.3390/md9040666 https://www.ncbi.nlm.nih.gov/pubmed/21731556 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124979
  62. Underwood G.J. C., Boulcot, M., Raines C.A., and Waldron K., J. Phycol., 2004, 40(2): 293–304. https://doi.org/10.1111/j.1529-8817.2004.03076.x
  63. Underwood G.J.C. and Kromkamp J., Adv. Ecol. Res., 1999, 29: 93–153. https://doi.org/10.1016/S0065-2504(08)60192-0
  64. Underwood G.J.C. and Paterson D.M., Adv. Bot. Res., 2003, 40: 184–240. https://doi.org/10.1016/S0065-2296(05)40005-1
  65. Urbani R., Magaletti E., Sist P., and Cicero A.M., Sci. Total Environ., 2005, 353(1–3): 300–306. https://doi.org/10.1016/j.scitotenv.2005.09.026 https://www.ncbi.nlm.nih.gov/pubmed/16223520
  66. Van Colen C., Underwood G.J.C., Serodio J., and Paterson D.M., J. Sea Res., 2014, 92: 2–5. https://doi.org/10.1016/j.seares.2014.07.003
  67. Vu B., Chen M., Crawford R.J., and Ivanova E., Molecules, 2009, 14(7): 2535–2554. https://doi.org/10.3390/molecules14072535 https://www.ncbi.nlm.nih.gov/pubmed/19633622
  68. Williams P.J.L., Mar. Chem., 1995, 15(1): 17–29. https://doi.org/10.1016/0304-4203(95)00046-T
  69. Williams P.J.L., Mar. Microb. Food Webs., 1990, 4: 175–206.
  70. Wustman B.A., Gretz M.R., and Hoagland R.D., Plant Physiol., 1997, 113(4): 1059–1069. https://doi.org/10.1104/pp.113.4.1059 https://www.ncbi.nlm.nih.gov/pubmed/12223660 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC158229
  71. Yallop M.L., Paterson D.M., and Wellsbury P., Microbiol. Ecol., 2000, 39(2): 116–127. https://doi.org/10.1007/s002489900186 https://www.ncbi.nlm.nih.gov/pubmed/10833224
  72. Zolotarova O.K., Shnyukova Ye.I., Sivash O.O., and Mikhaylenko N.F., Perspektivi vikoristannya mikrovodorostey u biotekhnologiyi [Prospects for the use of microalgae in biotechnology], Alterpres, Kiev, 2008, 234 p.