ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 2 of 8
Up
Algologia 2017, 27(2): 129–144
https://doi.org/10.15407/alg27.02.129
Physiology, Biochemistry, Biophysics

Biochemical analysis of a few marine macroalgae from the Kollam Coast of India

Anisha Shashidharan1, Sophiammal Nettar Plomindas2
Abstract

A collection of some of the marine macroalgal species from the Kollam Coast of India belonging to three major groups (Chlorophyceaea, Phaeophyceaea, and Rhodophyceaea) levels of moisture, total carbohydrates, total proteins and few antioxidant components, namely, ascorbic acid, β-carotene and catalase enzyme, were analyzed. Standard procedures were followed for carrying out estimations and assays. Moisture levels were highest in the green alga Caulerpa scalpelliformis, while protein concentration was astonishingly high in the Phaeophycean member Padina tetrastromatica. Carbohydrate levels were highest in brown algal members. Ascorbic acid concentration was almost similar in the studied species. The β-carotene values were highest in C. scalpelliformis and lowest in the other green alga, Ulva lactuca. Catalase activity was found prominent in Sargassum tenerrimum. The results obtained in the present work reveal the basic biochemical components of five seaweeds from the Kollam Coast in India. Interestingly, P. tetrastromatica showed surplus levels of protein when compared to the normal trend for brown algae. Ascorbic acid, an antioxidant, was found at similar levels in the studied species and almost at par with some common fruits. Thus, the studied seaweeds could definitely be considered as a source of vitamin C and other nutrients on the basis of further in-depth studies.

Keywords: Chlorophyceae, Phaeophyceae, Rhodophyceae, seaweeds, antioxidants, reactive oxygen species, stress, macroalgae, India

Full text: PDF 242K

References
  1. AOAC (Association of Official Analytical Chemists). In: Official Methods of Analysis, Howitz, 1980, pp. 734–740.
  2. Aono M., Saji H., Sakamoto A., Tanaka K., Kondo N., Tanaka K. Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol., 1995, 36(8): 1687–1691. https://www.ncbi.nlm.nih.gov/pubmed/8589939
  3. Banerjee K., Ghosh R., Homechaudhuri S., Mitra A. Biochemical composition of marine macroalgae from Gangetic delta at the apex of Bay of Bengal. Afr. J. Basic and Appl. Sci., 2009, 1(5–6): 96–104.
  4. Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 2003, 91: 179–194. https://doi.org/10.1093/aob/mcf118 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244988
  5. Bradford M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Bruton T., Lyons H., Lerat Y., Stanley M., Rasmussen M.B. A review of the potential of marine algae as a source of Biofuel in Ireland. Sustainable Energy Ireland, 2009, 1–88.
  7. Burtan G.W., Ingold K.U. β-carotene an unusual type of lipid antioxidant. Science, 1984, 224: 569–574. https://doi.org/10.1126/science.6710156
  8. Chakraborty S., Santra S.C., Bhattacharya T. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years. Ind. J. Mar. Sci., 2010, 39(3): 429–433.
  9. Chidambara Murthy K.N., Rajesha J., Vanitha A., Sowmya P.R., Mathadera Swamy M., Ravishankar G.A. Vivo Antioxidant Activity of Cartenoids From Dunaliella salina – A green Microalgae. Life Sci., 2005, 76(12): 1381–1390. https://doi.org/10.1016/j.lfs.2004.10.015 https://www.ncbi.nlm.nih.gov/pubmed/15670617
  10. Chkhubianishvili E., Kacharava N., Badridze G., Chanishvili S., Kurdadze T. Activity of Peroxidase, Catalase and Content of Total Proteins in Leaves of some Herbaceous Plants of High Mountains of the Caucasus. Bull. Georg. Nat. Acad. Sci., 2011, 5: 96–100.
  11. Cornish M.L., Garbary D.J. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 2010, 25(4): 155–171. https://doi.org/10.4490/algae.2010.25.4.155
  12. Da Silva V.M., Silva L.A., Andrade J.B., Veloso M.C.C., Santos G.V. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quim. Nova, 2008, 31(4): 901–905. https://doi.org/10.1590/S0100-40422008000400030
  13. De Jesus Raposo M.F., de Morais A.M.B., de Morais R.M.S.C. Marine polysaccharides from algae with potential biomedical applications, Mar. Drugs, 2015, 13: 2967–3028. https://doi.org/10.3390/md13052967 https://www.ncbi.nlm.nih.gov/pubmed/25988519 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446615
  14. El Shafay S.M. Biochemical composition of some seaweeds from Hurghada coastal along Red sea coastal, Egypt. Int. J. Basic Appl. Sci., 2014, 14(1): 29–35.
  15. Foyer C.H., Noctor G. Oxygen processing in photosynthesis: regulation and signalling. New Phytol., 2000, 146: 359–388. https://doi.org/10.1046/j.1469-8137.2000.00667.x
  16. Frikha F., Kammoun M., Hammami N., Mchirgui R.A., Belbahri L., Gargouri Y., Miled N., Ben-Rebah F. Chemical composition and some biological activities of marine algae collected in Tunisia. Ciencias Mar., 2011, 37(2): 113–124. https://doi.org/10.7773/cm.v37i2.1712
  17. Fujimoto K. Antioxidant activity of algal extracts. In: Introduction to applied phycology, The Hague: SPB Acad. Press, 1990, pp. 199–208.
  18. Gil M.I., Tomaas-Barberaan F.A., Hess-Pierce B., Kader A.D. Antioxidant capacities, Phenolic Compounds, Carotenoids, and Vitamin C Contents of Nectarine, Peach, and Plum Cultivars from California. J. Agr. Food Chem., 2002, 50: 4976–4982. https://doi.org/10.1021/jf020136b https://www.ncbi.nlm.nih.gov/pubmed/12166993
  19. Hakiman M., Maziah M. Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. J. Med. Plant. Res., 2009, 3(3): 120–131.
  20. Kato J., Yamahara T., Tanaka K., Takio S., Satoh T. Characterization of catalase from green algae Chlamydomonas reinhardtii. J. Plant Physiol., 1997, 151: 262–268. https://doi.org/10.1016/S0176-1617(97)80251-9
  21. Loew O. A new enzyme of general occurrence in organisms. Science, 1900, 11: 701–702. https://doi.org/10.1126/science.11.279.701 https://www.ncbi.nlm.nih.gov/pubmed/17751716
  22. Matsukawa R., Dubinsky Z., Kishimoto E., Masaki K., Masuda Y., Takeuchi T., Chihara M., Yamamoto Y., Niki E., Karube I. A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol., 1997, 9: 29–35. https://doi.org/10.1023/A:1007935218120
  23. Mhamdi A., Queval G., Chaouch S., Vanderauwera S., Van Breusegem F., Noctor G. Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot., 2010, 61(15): 4197–4220. https://doi.org/10.1093/jxb/erq282 https://www.ncbi.nlm.nih.gov/pubmed/20876333
  24. Misra J.N. Phaeophyceae in India, New Delhi: ICAR, 1966.
  25. Mullen R.T., Lee M.S., Trelease R.N. Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J., 1997, 12: 313–322. https://doi.org/10.1046/j.1365-313X.1997.12020313.x https://www.ncbi.nlm.nih.gov/pubmed/9301084
  26. Murata M., Nakazoe J. Production and use of Marine algae in Japan. JARQ, 2001, 35(4): 281–290. https://doi.org/10.6090/jarq.35.281
  27. Paquot C., Hautfenne A. Standard Methods for the Analysis of Oil, Fats and Derivatives, 7th ed., Oxford: Blackwell Sci. Publ., 1987.
  28. Pise N.M., Gaikwad D.K., Jagtap T.G. Oxidative stress and antioxidant indices of the marine red alga Porphyra vietnamensis. Acta Bot. Croat., 2013, 72(2): 197–209. https://doi.org/10.2478/v10184-012-0024-6
  29. Rapoport R., David S., David W., Amira S.A., Israel H. Antioxidant capacity is correlated with steroidogenic status of the corpus luteum during the bovine estrous cycle. Biochem. Biophys. Acta, 1998, 138: 133–140. https://doi.org/10.1016/S0304-4165(97)00136-0
  30. Sadasivam S., Manickam A. Estimation of dehydroascorbic acid. Biochem. Methods, 1996, 184–186.
  31. Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot., 1996, 78: 661–669. https://doi.org/10.1006/anbo.1996.0175
  32. Soto P., Gaete H., Hidalgo M.E. Assessment of catalase activity, lipid peroxidation, chlorophyll a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat. Amer. J. Aquat. Res., 2011, 39: 280–285. https://doi.org/10.3856/vol39-issue2-fulltext-9
  33. Tamiya H. Role of algae as food. Proceedings of the Symposium on Algology, New Delhi: The Indian Council Agricult. Res. and UNESCO South Asia Sci. Cooperat. Office, 1959.
  34. Thomas N.V., Kim S.K. Beneficial Effects of Marine Algal Compounds in Cosmeceuticals. Mar. Drugs, 2013, 11: 146–164. https://doi.org/10.3390/md11010146 https://www.ncbi.nlm.nih.gov/pubmed/23344156 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564164
  35. Wang L., Wang X., Wu H., Liu R. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years. Mar. Drugs, 2014, 12: 4984–5020. https://doi.org/10.3390/md12094984 https://www.ncbi.nlm.nih.gov/pubmed/25257786 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178480
  36. Yemm E.W., Willis A.J. The estimation of carbohydrates in Plant extracts by Anthrone. Biochem. J., 1954, 57: 508–514. https://doi.org/10.1042/bj0570508 https://www.ncbi.nlm.nih.gov/pubmed/13181867 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1269789
  37. Zubia M., Robledo D., Freile-Pelegrin Y. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol., 2007, 19: 449–458. https://doi.org/10.1007/s10811-006-9152-5