ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 8
Up
Algologia 2017, 27(3): 231–245
https://doi.org/10.15407/alg27.03.231
Physiology, Biochemistry, Biophysics

Salt stress effects on growth and photosynthetic pigments’ content in algoculture of Acutodesmus dimorphus (Chlorophyta)

Romanenko K.O.1, Romanenko P.O.2, Babenko L.M.1, Kosakivska I.V.1
Abstract

In this work we analyzed the effect of salt stress on cell number growth, biomass accumulation, and photosynthetic pigment content in algoculture of freshwater green alga Acutodesmus dimorphus (Turpin) P.M. Tsarenko. It was shown that the introduction of sodium chloride to a culture medium retards microalga growth and diminishes the quantity of chlorophylls a and b. Increases in salt concentrations and the duration of cultivation caused an increase in the amount of carotenoids. An increase in the carotenoid amount was observed on day 18 of cultivation for all applied salt concentrations, and maximum values were identified at 0.75% of NaCl in the culture medium.

Keywords: Acutodesmus dimorphus, salt stress, chlorophyll a, chlorophyll b, carotenoids

Full text: PDF (Rus) 271K

References
  1. Babenko L.M., Kosakivska I.V., Akimov Yu.A., Klymchuk D.O., Skaternya T.D. Genet. and Plant Physiol. 2014. 4(1–2): 117–125.
  2. Balnokin Yu.V., Stroganov B.P. In: Novye napravleniya v fiziologii rasteniy [New directions in plant physiology]. Moscow: Nauka Press, 1985. P. 199–213.
  3. Borysova O.V., Tsarenko P.M., Konishchuk M.O. Kolektsiya kultur mikrovodorostey IBASU-A [Microalgae cultures collection IBASU-A]. Kyiv, 2014. 110 p.
  4. Boussiba S., Fan L., Vonshak A. Methods Enzymol. Pt A: Carotenoids. 1992. 213: 386–391. https://doi.org/10.1016/0076-6879(92)13140-S
  5. Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., Pinto E. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007. 146(1–2): 60–78.
  6. Chokshi K., Pancha I., Trivedi K., George B., Maurya R., Ghosh A., Mishra S. Biores. Technol. 2015. 180: 162–171. https://doi.org/10.1016/j.biortech.2014.12.102 https://www.ncbi.nlm.nih.gov/pubmed/25600013
  7. Del Campo J.A., Rodríguez H., Moreno J., Vargas M.B., Rivas J., Guerrero M.G. Appl. Microbiol. Biotechnol. 2004. 64: 848–854. https://doi.org/10.1007/s00253-003-1510-5 https://www.ncbi.nlm.nih.gov/pubmed/14689249
  8. Doria E., Longoni P., Scibilia L., Iazzi N., Cella R. J. Appl. Phycol. 2012. 24: 375–383. https://doi.org/10.1007/s10811-011-9759-z
  9. Duan X., Ren G.Y., Liu L.L., Zhu W.X. Afr. J. Biotechnol. 2012. 11(27): 7072–7078.
  10. El Baz F.K., Aboul-Enein A.M., El-Baroty G.S., Youssef A.M., Abdel-Baky H.H. J. Biol. Sci. 2002. 2(4): 220–223. https://doi.org/10.3923/jbs.2002.220.223
  11. El-Sayed A.B. Nature Sci. 2010. 8(10): 34–40.
  12. Fisher M., Pick U., Zamir A. Plant Physiol. 1994. 106(4): 1359–1365. https://doi.org/10.1104/pp.106.4.1359 https://www.ncbi.nlm.nih.gov/pubmed/12232413 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC159673
  13. Fu F.-X., Bell P.R.F. Mar. Ecol. Progr. Ser. 2003. 257: 69–76. https://doi.org/10.3354/meps257069
  14. Garcia-Gonzalez J., Sommerfeld M. J. Appl. Phycol. 2016. 28(2): 1051–1061. https://doi.org/10.1007/s10811-015-0625-2 https://www.ncbi.nlm.nih.gov/pubmed/27057088 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789255
  15. Goyal A. Plant Physiol. Biochem. 2007. 45: 705–710. https://doi.org/10.1016/j.plaphy.2007.05.009 https://www.ncbi.nlm.nih.gov/pubmed/17764963
  16. Gupta B., Huang B. Int. J. Genom. 2014: 1–18.
  17. Haubner N., Sylvander P., Vuori K., Snoeijs P. J. Phycol. 2014. 50: 753–759. https://doi.org/10.1111/jpy.12198 https://www.ncbi.nlm.nih.gov/pubmed/26988459
  18. Hu Q. Environmental Effects on Cell Composition. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford (UK): Black. Sci. Ltd., 2004. P. 83–93.
  19. Jahnke L.C., White A.L. J. Plant Physiol. 2003. 160(10): 1193–1202. https://doi.org/10.1078/0176-1617-01068 https://www.ncbi.nlm.nih.gov/pubmed/14610888
  20. Kaewkannetra P., Enmak P., Chiu T.Y. Biotechnol. Bioproc. Eng. 2012. 17: 591–597. https://doi.org/10.1007/s12257-011-0533-5
  21. Kalita N., Baruah G., Dev Goswami R.C., Talukdar J., Kalita M.C. J. Microbiol. Biotechol. Res. 2011. 1(4): 148–157.
  22. Kobayashi M., Kakizono T., Nagai S. J. Ferment. Bioeng. 1991. 71(5): 335–339. https://doi.org/10.1016/0922-338X(91)90346-I
  23. Kobayashi M., Kurimura Y., Tsuji Y. Biotechnol. Lett. 1997. 19(6): 507–509. https://doi.org/10.1023/A:1018372900649
  24. La H.-J., Choi G.-G., Cho C., Seo S.-H., Srivastava A., Jo B.-H., Lee J.-Y., Jin Y.-S., Oh H.-M. J. Appl. Phycol. 2016. 28(2): 931–938. https://doi.org/10.1007/s10811-015-0674-6
  25. Liang Y., Cao C., Tian C., Sun M. Algol. Stud. 2014. 145–146: 81–98. https://doi.org/10.1127/1864-1318/2014/0157
  26. Lu N., Wei D., Chen F., Yang S.-T. Eur. J. Lipid Sci. Technol. 2012. 114: 253–265. https://doi.org/10.1002/ejlt.201100248
  27. Masojídek J., Torzillo G., Kopecký J., Koblížek M., Nidiaci L., Komenda J., Lukavská A., Sacchi A. J. Appl. Phycol. 2000. 12: 417–426. https://doi.org/10.1023/A:1008165900780
  28. Mata T.M., Melo A.C., Simões M., Caetano N.S. Biores. Technol. 2012. 107: 151–158. https://doi.org/10.1016/j.biortech.2011.12.109 https://www.ncbi.nlm.nih.gov/pubmed/22244957
  29. Metody fiziologo-biokhimicheskogo issledovaniya vodorosley v gidrobiologicheskoy praktike. Red. A.V. Topachevskiy [Methods of physiological and biochemical studies of algae in hydrobiological practice. Ed. A.V. Topachevskiy]. Kiev: Nauk. Dumka Press, 1975. 247 p.
  30. Mishra A., Mandoli A., Jha B. J. Ind. Microbiol. Biotechnol. 2008. 35: 1093–1101. https://doi.org/10.1007/s10295-008-0387-9 https://www.ncbi.nlm.nih.gov/pubmed/18604577
  31. Nishino H., Murakoshi M., Tokuda H., Satomi Y. Arch. Biochem. Biophys. 2009. 483: 165–168. https://doi.org/10.1016/j.abb.2008.09.011 https://www.ncbi.nlm.nih.gov/pubmed/18848517
  32. Pelah D., Sintov A., Cohen E. World J. Microbiol. Biotechnol. 2004. 20: 483–486. https://doi.org/10.1023/B:WIBI.0000040398.93103.21
  33. Rafiqul I.M., Hassan A., Sulebele G., Orosco C.A., Roustaian P., Jalal K.C.A. Pak. J. Biol. Sci. 2003. 6: 648–650. https://doi.org/10.3923/pjbs.2003.648.650
  34. Ranga Rao A., Dayananda C., Sarada R., Shamala T.R., Ravishankar G.A. Biores. Technol. 2007. 98: 560–564. https://doi.org/10.1016/j.biortech.2006.02.007 https://www.ncbi.nlm.nih.gov/pubmed/16782327
  35. Ranga Rao A., Sarada R., Ravishankar G.A. Int. J. Biomed. Pharm. Sci. 2010. 4(2): 87–92.
  36. Richmond A. Cell response to environmental factors. In: CRC Handbook of Microalgal Mass culture. Florida: CRC Press Inc., 1986. P. 89–95.
  37. Romanenko E.A., Kosakovskaya I.V., Romanenko P.A. Int. J. on Algae. 2015. 17(3): 275–289. https://doi.org/10.1615/InterJAlgae.v17.i3.80
  38. Romanenko K.O., Kosakovskaya I.V., Romanenko P.O. Int. J. on Algae. 2016. 18(2): 179–201. https://doi.org/10.1615/InterJAlgae.v18.i2.70
  39. Ruangsomboon S. Biores. Technol. 2012. 109: 261–265. https://doi.org/10.1016/j.biortech.2011.07.025 https://www.ncbi.nlm.nih.gov/pubmed/21803571
  40. Sadka A., Himmelhoch S., Zamir A. Plant Physiol. 1991. 95(3): 822–831. https://doi.org/10.1104/pp.95.3.822 https://www.ncbi.nlm.nih.gov/pubmed/16668060 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077612
  41. Sánchez J.F., Fernández J.M., Acién F.G., Rueda A., Pérez-Parra J., Molina E. Proc. Biochem. 2008. 43: 398–405. https://doi.org/10.1016/j.procbio.2008.01.004
  42. Sibi G., Shetty V. J. Energy Inst. 2015. 89(3): 330–334. https://doi.org/10.1016/j.joei.2015.03.008
  43. Solovchenko A.E. Fiziol. Rast. 2013. 60(1): 3–16. https://doi.org/10.7868/S0015330313010089
  44. Sudhir P., Murthy S.D.S. Photosynthetica. 2004. 42(4): 481–486. https://doi.org/10.1007/S11099-005-0001-6
  45. Takagi M., Karseno, Yoshida T.J. Biosci. Bioeng. 2006. 101(3): 223–226. https://doi.org/10.1263/jbb.101.223 https://www.ncbi.nlm.nih.gov/pubmed/16716922
  46. Tsarenko P., Borisova O., Blyum Ya. Visnyk NAN Ukrainy. 2011. 5: 49–54.
  47. Tsarenko P.M., Borisova E.V. Algologia. 2014. 24(3): 409–412.
  48. Vonshak A., Torzillo G. Environmental Stress Physiology. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford (UK): Black. Sci., 2004. P. 57–82.
  49. Wellburn A. J. Plant Physiol. 1994. 144: 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2