ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 8 of 8
Up
Algologia 2017, 27(3): 337–356
https://doi.org/10.15407/alg27.03.337
Procedure

Algae as a platform for biofuel production - a sustainable perspective

Amin-ul Mannan M. 1,2, D. Hazra1, A. Karnwal1, D.Ch. Kannan2
Abstract

Human population has dramatically increased in the past few decades, stretching finite fossil fuel resources. Renewable energy is an alternative and solution to growing energy demands. Among all renewable energy resources, bioethanol and biodiesel seem to be the future's energy resources. Biofuels can be produced from various feedstocks comprising energy crops, non-food crops, and algae. In this review, we have described biofuel production using algae. Algae, a third generation fuel crop, can be used for both bioethanol and biodiesel production. Besides biofuel, algae can also be used for the production of bioactive secondary metabolites, nutraceuticals, and pharmaceutical products. Algae can serve as a good source of biomass for biofuel production, however, to be economically viable, optimized methods for growth conditions, harvesting, and oil extraction should be employed. Furthermore, we have described the genomic strategies to improve algae strains for its photosynthetic ability and rate of photosynthesis.

Keywords: bioethanol, biofuel, algae, sustainable energy

Full text: PDF 274K

References
  1. Abdelaziz A.E., Leite G.B., Belhaj M.A., Hallenbeck P.C. Biores. Technol. 2014. 157: 140–148, https://doi.org/10.1016/j.biortech.2014.01.114 https://www.ncbi.nlm.nih.gov/pubmed/24549235
  2. Adams J.M., Gallagher J.A., Donnison I.S. J. Appl. Phycol. 2009. 21: 569. https://doi.org/10.1007/s10811-008-9384-7
  3. Aguirre A.M., Bassi A., Saxena P. Crit Rev. Biotechnol. 2013. 33: 293–308. https://doi.org/10.3109/07388551.2012.695333 https://www.ncbi.nlm.nih.gov/pubmed/22804334
  4. Ajayebi A., Gnansounou E., Kenthorai R.J. Biores. Technol. 2013. 150: 429–437. https://doi.org/10.1016/j.biortech.2013.09.118 https://www.ncbi.nlm.nih.gov/pubmed/24140355
  5. Aresta M., Dibenedetto A., Carone M., Colonna T., Fragale C. Environ. Chem. Lett. 2005. 3: 136–139. https://doi.org/10.1007/s10311-005-0020-3
  6. Armstrong J.E., Janda K.E., Alvarado B., Wright A.E. J. Appl. Phycol. 1991. 3: 277–282. https://doi.org/10.1007/BF00003586
  7. Arora N., Patel A., Sartaj K., Pruthi P. A., Pruthi V. Environ. Sci. Pollut. Res. Int. 2016. 23: 20997–21007. https://doi.org/10.1007/s11356-016-7320-y https://www.ncbi.nlm.nih.gov/pubmed/27488714
  8. Aucoin H.R., Gardner J., Boyle N.R. Subcell Biochem. 2016. 86: 447–469. https://doi.org/10.1007/978-3-319-25979-6_18 https://www.ncbi.nlm.nih.gov/pubmed/27023246
  9. Barsanti L., Gualtieri P. Algae: Anatomy, Biochemistry, and Biotechnology. 1st ed. Boca Raton, FL: CRC Press, 2005 p.
  10. Behera S., Singh R., Arora R., Sharma N.K., Shukla M., Kumar S. Front Bioeng. Biotechnol. 2014. 2: 90. https://www.ncbi.nlm.nih.gov/pubmed/25717470
  11. Bigogno C., Khozin-Goldberg I., Boussiba S., Vonshak A., Cohen Z. Phytochemistry. 2002. 60: 497–503. https://doi.org/10.1016/S0031-9422(02)00100-0
  12. Borines M.G., de Leon R.L. Elsevier. 2013.138: 22–29.
  13. Borodin V.B. Rus. J. Plant Physiol. 2008. 55: 441–448.
  14. Borowitzka M.A. J. Appl. Phycol. 1995. 7: 3–15. https://doi.org/10.1007/BF00003544
  15. Casas-Mollano J. A., Rohr J., Kim E. J., Balassa E., van Dijk K., Cerutti H. Genetics. 2008. 179: 69–81. https://doi.org/10.1534/genetics.107.086546 https://www.ncbi.nlm.nih.gov/pubmed/18493041 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390644
  16. Chen C.Y., Yeh K.L., Aisyah R., Lee D.J., Chang J.S. Biores. Technol. 2011. 102: 71–81. https://doi.org/10.1016/j.biortech.2010.06.159 https://www.ncbi.nlm.nih.gov/pubmed/20674344
  17. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007. 25: 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 https://www.ncbi.nlm.nih.gov/pubmed/17350212
  18. Chisti Y. Trends Biotechnol. 2008. 26: 126–131. https://doi.org/10.1016/j.tibtech.2007.12.002 https://www.ncbi.nlm.nih.gov/pubmed/18221809
  19. Choudri B.S., Baawain M. Water Environ. Res. 2015. 87: 1414–1444. https://doi.org/10.2175/106143015X14338845155985 https://www.ncbi.nlm.nih.gov/pubmed/26420094
  20. Cohen J., Kim K., Posewitz M.C., Ghirardi M.L., Schulten K., Seibert M., King P. Biochem. Soc. Trans. 2005. 33: 80–82. https://doi.org/10.1042/BST0330080 https://www.ncbi.nlm.nih.gov/pubmed/15667271 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587414
  21. Crist R.H., Martin J.R., Guptill P.W., Eslinger J.M., Crist D.L.R. Environ. Sci. Technol. 1990. 24: 337–342. https://doi.org/10.1021/es00073a008
  22. Cuhel R.L., Ortner P.B., Lean D.R.S. Limnol. Oceanogr. 1984. 29: 731–744. https://doi.org/10.4319/lo.1984.29.4.0731
  23. Daroch M., Geng S., Wang G. Appl. Energy. 2013. 102: 1371–1381. https://doi.org/10.1016/j.apenergy.2012.07.031
  24. Dassey A.J., Theegala C.S. Biores. Technol. 2013. 128: 241–245. https://doi.org/10.1016/j.biortech.2012.10.061 https://www.ncbi.nlm.nih.gov/pubmed/23196245
  25. Dragone G., Fernandes B.D., Abreu A.P., Vicente A.A., Teixeira J.A. Appl. Energy. 2011. 88: 3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012
  26. Emerson R.L., Lewis C.M. Amer. J. Biotechnol. 1943. 30: 165–178.
  27. Enquist-Newman M., Faust A.M., Bravo D.D., Santos C.N., Raisner R.M., Hanel A., Sarvabhowman P., Le C., Regitsky D.D., Cooper S.R., Peereboom L., Clark A., Martinez Y., Goldsmith J., Cho M.Y., Donohoue P.D., Luo L., Lamberson B., Tamrakar P., Kim E.J., Villari J.L., Gill A., Tripathi S.A., Karamchedu P., Paredes C.J., Rajgarhia V., Kotlar H.K., Bailey R.B., Miller D.J., Ohler N.L., Swimmer C., Yoshikuni Y. Nature. 2014. 505: 239–243. https://doi.org/10.1038/nature12771 https://www.ncbi.nlm.nih.gov/pubmed/24291791
  28. Fu W., Chaiboonchoe A., Khraiwesh B., Nelson D.R., Al-Khairy D., Mystikou A., Alzahmi A., Salehi-Ashtiani K. Mar. Drugs. 2016. 14(12): 225. https://doi.org/10.3390/md14120225 https://www.ncbi.nlm.nih.gov/pubmed/27983586 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192462
  29. Gimpel J.A., Specht E.A., Georgianna D.R., Mayfield S.P. Curr. Opin. Chem. Biol. 2013. 17: 489–495. https://doi.org/10.1016/j.cbpa.2013.03.038 https://www.ncbi.nlm.nih.gov/pubmed/23684717
  30. Gomaa M.A., Al-Haj L., Abed R.M. J. Appl. Microbiol. 2016. 121: 919–931. https://doi.org/10.1111/jam.13232 https://www.ncbi.nlm.nih.gov/pubmed/27406848
  31. Gonzáles V.A., Platas G., Basilio A., Cabello A., Gorrochategui J., Suay I., Vicente F., Portillo E., Jiménez del Rio M., Reina G.G., Peláez F. Int. Microbiol. 2001. 4: 35–40.
  32. Gouveia L., Oliveira A.C. J. Indust. Microbiol. and Biotechnol. 2009. 36: 269–274. https://doi.org/10.1007/s10295-008-0495-6 https://www.ncbi.nlm.nih.gov/pubmed/18982369
  33. Guiry M.D., Guiry G.M. AlgaeBase. World-wide electron. publ. Nat. Univ. Ireland, Galway, 2017. http://www.algaebase.org.
  34. Harun R., Danquah M.K. Elsevier. 2011. 46: 304–309.
  35. Harun R., Jason W.S.Y., Cherrington T., Danquah M.K. Appl. Energy. 2011. 88: 3464–3467. https://doi.org/10.1016/j.apenergy.2010.10.048
  36. Harun R., Yip J.W., Thiruvenkadam S., Ghani W.A., Cherrington T., Danquah M.K. Biotechnol. J. 2014. 9: 73–86. https://doi.org/10.1002/biot.201200353 https://www.ncbi.nlm.nih.gov/pubmed/24227697
  37. Healey F.P., Hendzel L.L. J. Fish. Board Can. 1979. 36(11): 1364–1369. https://doi.org/10.1139/f79-195
  38. Heraud P., Wood B.R., Tobin M.J., Beardall J., McNaughton D. FEMS Microbiol. Lett. 2005. 249: 219–225. https://doi.org/10.1016/j.femsle.2005.06.021 https://www.ncbi.nlm.nih.gov/pubmed/16006070
  39. Hirano A., Ueda R., Hirayama S., Ogushi Y. Elsevier. 1997. 22: 137–142.
  40. Ho S.H., Huang S.W., Chen C.Y., Hasunuma T., Kondo A., Chang J.S. Biores. Technol. 2013. 135: 191–198. https://doi.org/10.1016/j.biortech.2012.10.015 https://www.ncbi.nlm.nih.gov/pubmed/23116819
  41. Hossain S., Salleh A., Boyce A.N., Chowdhury P., Husri N.M. Amer. J. Biochem. and Biotechnol. 2008. 4: 250–254. https://doi.org/10.3844/ajbbsp.2008.250.254
  42. Illman A.M., Scragg A.H., Shales S.W. Enzyme Microbial. Technol. 2000 27: 631–635. https://doi.org/10.1016/S0141-0229(00)00266-0
  43. John R.P., Anisha G.S., Nampoothiri K.M., Pandey A. Biores. Technol. 2011. 102: 186–193. https://doi.org/10.1016/j.biortech.2010.06.139 https://www.ncbi.nlm.nih.gov/pubmed/20663661
  44. John R.P., Nampoothiri K.M., Pandey A. Biores. Technol. 2011. 102: 186–193. https://doi.org/10.1016/j.biortech.2010.06.139 https://www.ncbi.nlm.nih.gov/pubmed/20663661
  45. Juneja A., Ceballos R.M., Murthy G.S. Energies. 2013. 6: 4067–4638. https://doi.org/10.3390/en6094607
  46. Khambhaty Y., Mody K., Gandhi M.R., Thampy S., Maiti P., Brahmbhatt H., Eswaran K., Ghosh P.K. Elsevier. 2012. 103: 180–185.
  47. Kilham S.S., Kreeger D.A., Goulden C.E., Lynn S.G. Freshwat. Biol. 1997. 38: 591–596. https://doi.org/10.1046/j.1365-2427.1997.00231.x
  48. Kim K.H., Choi I.S., Kim H.M., Wi S.G., Bae H.J. Biores. Technol. 2014. 153: 47–54. https://doi.org/10.1016/j.biortech.2013.11.059 https://www.ncbi.nlm.nih.gov/pubmed/24333701
  49. Lee H.J., Kim S.J., Yoon J.J., Kim K.H., Seo J.H., Park Y.C. Biores. Technol. 2015. 191: 445. https://doi.org/10.1016/j.biortech.2015.03.057 https://www.ncbi.nlm.nih.gov/pubmed/25804535
  50. Li Y., Horsman M., Wang B., Wu N., Lan C.Q. Appl. Mcrobiol. and Biiotechnol. 2008. 81: 629–636. https://doi.org/10.1007/s00253-008-1681-1 https://www.ncbi.nlm.nih.gov/pubmed/18795284
  51. Lynn S.G., Kilham S.S., Kreeger D.A. Interlandi S.J. J. Phycol. 2000. 36: 510–522. https://doi.org/10.1046/j.1529-8817.2000.98251.x
  52. Marin B., Melkonian M. Protist. 2010. 161: 304–336. https://doi.org/10.1016/j.protis.2009.10.002 https://www.ncbi.nlm.nih.gov/pubmed/20005168
  53. Mata T.M., Martins A.A., Caetano N.S. Renew. and Sustain. Energy. 2010. 14: 217–232. https://doi.org/10.1016/j.rser.2009.07.020
  54. Meinita M.D.N., Kang J.Y., Jeong G.T., Koo H.M., Park S.M., Hon Y.K. J. Appl. Phycol. 2011. 24: 857–862. https://doi.org/10.1007/s10811-011-9705-0
  55. Melis A. Plant Sci. 2009. 177: 272–280. https://doi.org/10.1016/j.plantsci.2009.06.005
  56. Melis A., Zhang L., Forestier M., Ghirardi L., Seibert M. Plant Physiol. 2009. 122: 127–136. https://doi.org/10.1104/pp.122.1.127
  57. Morris I., Glover H.E., Yentsch C. Mar. Biol. 1974. 27: 1–9. https://doi.org/10.1007/BF00394754
  58. Moya P., Skaloud P., Chiva S., Garcia-Breijo F.J., Reig-Arminana J., Vancurova L., Barreno E. Int. J. Syst. Evol. Microbiol. 2015. 65: 1838–1854. https://doi.org/10.1099/ijs.0.000185 https://www.ncbi.nlm.nih.gov/pubmed/25757706
  59. Naik S., Goud V.V., Rout P.K., Dalai A.K. Renew. Sust. Energy Rev. 2010. 14: 578–597. https://doi.org/10.1016/j.rser.2009.10.003
  60. Pittman J.K., Dean A.P., Osundeko O. Biores. Technol. 2011. 102: 17–25. https://doi.org/10.1016/j.biortech.2010.06.035 https://www.ncbi.nlm.nih.gov/pubmed/20594826
  61. Posewitz M.C., King P.W., Smolinski S.L., Smith R.D., Ginley A.R., Ghirardi M.L., Seibert M. Biochem. Soc. Trans. 2005. 33: 102–103. https://doi.org/10.1042/BST0330102 https://www.ncbi.nlm.nih.gov/pubmed/15667277
  62. Posewitz M.C., Smolinski S.L., Kanakagiri S., Melis A., Seibert M., Ghirardi M.L. Plant Cell. 2004. 16: 2151–2163. https://doi.org/10.1105/tpc.104.021972 https://www.ncbi.nlm.nih.gov/pubmed/15269330 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC519204
  63. Radakovits R., Jinkerson R.E., Darzins A., Posewitz M.C. Amer. Soc. Microbiol. 2010. 9: 486–501.
  64. Rai L.C., Mallick N. Ecotoxicology. 1993. 2: 231–242. https://doi.org/10.1007/BF00368532 https://www.ncbi.nlm.nih.gov/pubmed/24201734
  65. Rathmann R., Szklo A., Schaeffer R. Renew. Energy. 2010 35: 14–22. https://doi.org/10.1016/j.renene.2009.02.025
  66. Renaud S.M., Parry D.L., Thinh L.V., Kuo C., Padovan A., Sammy N. J. Appl. Phycol. 1991. 3: 43–53. https://doi.org/10.1007/BF00003918
  67. Rios S.D., Torres C.M., Torras C., Salvado J., Mateo-Sanz J.M., Jimenez L. Biores. Technol. 2013. 136: 617–625. https://doi.org/10.1016/j.biortech.2013.03.046 https://www.ncbi.nlm.nih.gov/pubmed/23567739
  68. Roessler G.P. J. Phycol. 1996. 26: 393–399. https://doi.org/10.1111/j.0022-3646.1990.00393.x
  69. Round F.E. The Ecology of Algae. Cambridge: Cambridge Univ. Press, 1984.
  70. Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J., Lea-Smith D.J., Smith A.G. Curr. Opin. Biotechnol. 2010. 21: 277–286. https://doi.org/10.1016/j.copbio.2010.03.005 https://www.ncbi.nlm.nih.gov/pubmed/20399634
  71. Searchinger T., Heimlich R., Houghton R.A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T.H. Science. 2008. 319: 1238–1240. https://doi.org/10.1126/science.1151861 https://www.ncbi.nlm.nih.gov/pubmed/18258860
  72. Selivanova E.A., Ignatenko M.E., Nemtseva N.V. J. Mikrobiol. Epidemiol. Immunobiol. 2014. (4): 72–76.
  73. Smith R.E.H., Cavaletto J.R., Eadie B., Gardner W. Mar. Ecol. Progr. Ser. 1993. 97: 19–29. https://doi.org/10.3354/meps097019
  74. Stauber J.L., Florence T.M. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 1987. 94: 511–519. https://doi.org/10.1007/BF00431397
  75. Stöcker M. Angew. Chem. Int. Ed. 2008. 47: 9200–9211. https://doi.org/10.1002/anie.200801476 https://www.ncbi.nlm.nih.gov/pubmed/18937235
  76. Sukenik A., Carmeli Y., Berner T. J. Phycol. 1989. 25: 686–692. https://doi.org/10.1111/j.0022-3646.1989.00686.x
  77. Sung M.G., Lee H., Nam K., Rexroth S., Rogner M., Kwon J.H., Yang J.W. Bioproc. Biosyst. Eng. 2015. 38: 517–522. https://doi.org/10.1007/s00449-014-1291-5 https://www.ncbi.nlm.nih.gov/pubmed/25270405
  78. Szczodrak J., Fiedurek J. Biomass Bioenergy. 1996. 10: 367–375. https://doi.org/10.1016/0961-9534(95)00114-X
  79. Takagi M., Watanabe K., Yamaberi K., Yoshida T. Appl. Microbiol. Biotechnol. 2000. 54: 112–117. https://doi.org/10.1007/s002530000333 https://www.ncbi.nlm.nih.gov/pubmed/10952013
  80. Tan I., Man K., Keat T. Elsevier. 2013. 94: 561–566.
  81. Terry N., Abadia J. J. Plant Nutr. 1986. 6: 609–646. https://doi.org/10.1080/01904168609363470
  82. Tilman D., Hill J., Lehman C. Science. 2006. 314: 1598–1600. https://doi.org/10.1126/science.1133306 https://www.ncbi.nlm.nih.gov/pubmed/17158327
  83. Vessey J.K. Plant Soil. 2003. 255: 571–586. https://doi.org/10.1023/A:1026037216893
  84. Vigeolas H., Waldeck P., Zank T., Geigenberger P. Plant Biotechnol. 2007. 5: 431–441. https://doi.org/10.1111/j.1467-7652.2007.00252.x https://www.ncbi.nlm.nih.gov/pubmed/17430545
  85. Wong P.T.S., Chau Y.K. Toxicol. Ass. 1990. 5: 167–177. https://doi.org/10.1002/tox.2540050205
  86. Xin L., Hu H.Y, Ke G., Sun Y.X. Biores. Technol. 2010. 101: 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016 https://www.ncbi.nlm.nih.gov/pubmed/20202827
  87. Yoon M.H., Lee Y.W., Lee C.H., Seo Y.B. Biores. Technol. 2012. 126: 198–201. https://doi.org/10.1016/j.biortech.2012.08.102 https://www.ncbi.nlm.nih.gov/pubmed/23073109