ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 8 of 8
Up
Algologia 2017, 27(3): 337–356
https://doi.org/10.15407/alg27.03.337
Procedure

Algae as a platform for biofuel production - a sustainable perspective

Amin-ul Mannan M. 1,2, D. Hazra1, A. Karnwal1, D.Ch. Kannan2
Abstract

Human population has dramatically increased in the past few decades, stretching finite fossil fuel resources. Renewable energy is an alternative and solution to growing energy demands. Among all renewable energy resources, bioethanol and biodiesel seem to be the future's energy resources. Biofuels can be produced from various feedstocks comprising energy crops, non-food crops, and algae. In this review, we have described biofuel production using algae. Algae, a third generation fuel crop, can be used for both bioethanol and biodiesel production. Besides biofuel, algae can also be used for the production of bioactive secondary metabolites, nutraceuticals, and pharmaceutical products. Algae can serve as a good source of biomass for biofuel production, however, to be economically viable, optimized methods for growth conditions, harvesting, and oil extraction should be employed. Furthermore, we have described the genomic strategies to improve algae strains for its photosynthetic ability and rate of photosynthesis.

Keywords: bioethanol, biofuel, algae, sustainable energy

Full text: PDF (Rus) 274K

References
  1. Abdelaziz A.E., Leite G.B., Belhaj M.A., Hallenbeck P.C. Biores. Technol. 2014. 157: 140–148,
  2. Adams J.M., Gallagher J.A., Donnison I.S. J. Appl. Phycol. 2009. 21: 569.
  3. Aguirre A.M., Bassi A., Saxena P. Crit Rev. Biotechnol. 2013. 33: 293–308.
  4. Ajayebi A., Gnansounou E., Kenthorai R.J. Biores. Technol. 2013. 150: 429–437.
  5. Aresta M., Dibenedetto A., Carone M., Colonna T., Fragale C. Environ. Chem. Lett. 2005. 3: 136–139.
  6. Armstrong J.E., Janda K.E., Alvarado B., Wright A.E. J. Appl. Phycol. 1991. 3: 277–282.
  7. Arora N., Patel A., Sartaj K., Pruthi P. A., Pruthi V. Environ. Sci. Pollut. Res. Int. 2016. 23: 20997–21007.
  8. Aucoin H.R., Gardner J., Boyle N.R. Subcell Biochem. 2016. 86: 447–469.
  9. Barsanti L., Gualtieri P. Algae: Anatomy, Biochemistry, and Biotechnology. 1st ed. Boca Raton, FL: CRC Press, 2005 p.
  10. Behera S., Singh R., Arora R., Sharma N.K., Shukla M., Kumar S. Front Bioeng. Biotechnol. 2014. 2: 90.
  11. Bigogno C., Khozin-Goldberg I., Boussiba S., Vonshak A., Cohen Z. Phytochemistry. 2002. 60: 497–503.
  12. Borines M.G., de Leon R.L. Elsevier. 2013.138: 22–29.
  13. Borodin V.B. Rus. J. Plant Physiol. 2008. 55: 441–448.
  14. Borowitzka M.A. J. Appl. Phycol. 1995. 7: 3–15.
  15. Casas-Mollano J. A., Rohr J., Kim E. J., Balassa E., van Dijk K., Cerutti H. Genetics. 2008. 179: 69–81.
  16. Chen C.Y., Yeh K.L., Aisyah R., Lee D.J., Chang J.S. Biores. Technol. 2011. 102: 71–81.
  17. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007. 25: 294–306.
  18. Chisti Y. Trends Biotechnol. 2008. 26: 126–131.
  19. Choudri B.S., Baawain M. Water Environ. Res. 2015. 87: 1414–1444.
  20. Cohen J., Kim K., Posewitz M.C., Ghirardi M.L., Schulten K., Seibert M., King P. Biochem. Soc. Trans. 2005. 33: 80–82.
  21. Crist R.H., Martin J.R., Guptill P.W., Eslinger J.M., Crist D.L.R. Environ. Sci. Technol. 1990. 24: 337–342.
  22. Cuhel R.L., Ortner P.B., Lean D.R.S. Limnol. Oceanogr. 1984. 29: 731–744.
  23. Daroch M., Geng S., Wang G. Appl. Energy. 2013. 102: 1371–1381.
  24. Dassey A.J., Theegala C.S. Biores. Technol. 2013. 128: 241–245.
  25. Dragone G., Fernandes B.D., Abreu A.P., Vicente A.A., Teixeira J.A. Appl. Energy. 2011. 88: 3331–3335.
  26. Emerson R.L., Lewis C.M. Amer. J. Biotechnol. 1943. 30: 165–178.
  27. Enquist-Newman M., Faust A.M., Bravo D.D., Santos C.N., Raisner R.M., Hanel A., Sarvabhowman P., Le C., Regitsky D.D., Cooper S.R., Peereboom L., Clark A., Martinez Y., Goldsmith J., Cho M.Y., Donohoue P.D., Luo L., Lamberson B., Tamrakar P., Kim E.J., Villari J.L., Gill A., Tripathi S.A., Karamchedu P., Paredes C.J., Rajgarhia V., Kotlar H.K., Bailey R.B., Miller D.J., Ohler N.L., Swimmer C., Yoshikuni Y. Nature. 2014. 505: 239–243.
  28. Fu W., Chaiboonchoe A., Khraiwesh B., Nelson D.R., Al-Khairy D., Mystikou A., Alzahmi A., Salehi-Ashtiani K. Mar. Drugs. 2016. 14(12): 225.
  29. Gimpel J.A., Specht E.A., Georgianna D.R., Mayfield S.P. Curr. Opin. Chem. Biol. 2013. 17: 489–495.
  30. Gomaa M.A., Al-Haj L., Abed R.M. J. Appl. Microbiol. 2016. 121: 919–931.
  31. Gonzáles V.A., Platas G., Basilio A., Cabello A., Gorrochategui J., Suay I., Vicente F., Portillo E., Jiménez del Rio M., Reina G.G., Peláez F. Int. Microbiol. 2001. 4: 35–40.
  32. Gouveia L., Oliveira A.C. J. Indust. Microbiol. and Biotechnol. 2009. 36: 269–274.
  33. Guiry M.D., Guiry G.M. AlgaeBase. World-wide electron. publ. Nat. Univ. Ireland, Galway, 2017. http://www.algaebase.org.
  34. Harun R., Danquah M.K. Elsevier. 2011. 46: 304–309.
  35. Harun R., Jason W.S.Y., Cherrington T., Danquah M.K. Appl. Energy. 2011. 88: 3464–3467.
  36. Harun R., Yip J.W., Thiruvenkadam S., Ghani W.A., Cherrington T., Danquah M.K. Biotechnol. J. 2014. 9: 73–86.
  37. Healey F.P., Hendzel L.L. J. Fish. Board Can. 1979. 36(11): 1364–1369.
  38. Heraud P., Wood B.R., Tobin M.J., Beardall J., McNaughton D. FEMS Microbiol. Lett. 2005. 249: 219–225.
  39. Hirano A., Ueda R., Hirayama S., Ogushi Y. Elsevier. 1997. 22: 137–142.
  40. Ho S.H., Huang S.W., Chen C.Y., Hasunuma T., Kondo A., Chang J.S. Biores. Technol. 2013. 135: 191–198.
  41. Hossain S., Salleh A., Boyce A.N., Chowdhury P., Husri N.M. Amer. J. Biochem. and Biotechnol. 2008. 4: 250–254.
  42. Illman A.M., Scragg A.H., Shales S.W. Enzyme Microbial. Technol. 2000 27: 631–635.
  43. John R.P., Anisha G.S., Nampoothiri K.M., Pandey A. Biores. Technol. 2011. 102: 186–193.
  44. John R.P., Nampoothiri K.M., Pandey A. Biores. Technol. 2011. 102: 186–193.
  45. Juneja A., Ceballos R.M., Murthy G.S. Energies. 2013. 6: 4067–4638.
  46. Khambhaty Y., Mody K., Gandhi M.R., Thampy S., Maiti P., Brahmbhatt H., Eswaran K., Ghosh P.K. Elsevier. 2012. 103: 180–185.
  47. Kilham S.S., Kreeger D.A., Goulden C.E., Lynn S.G. Freshwat. Biol. 1997. 38: 591–596.
  48. Kim K.H., Choi I.S., Kim H.M., Wi S.G., Bae H.J. Biores. Technol. 2014. 153: 47–54.
  49. Lee H.J., Kim S.J., Yoon J.J., Kim K.H., Seo J.H., Park Y.C. Biores. Technol. 2015. 191: 445.
  50. Li Y., Horsman M., Wang B., Wu N., Lan C.Q. Appl. Mcrobiol. and Biiotechnol. 2008. 81: 629–636.
  51. Lynn S.G., Kilham S.S., Kreeger D.A. Interlandi S.J. J. Phycol. 2000. 36: 510–522.
  52. Marin B., Melkonian M. Protist. 2010. 161: 304–336.
  53. Mata T.M., Martins A.A., Caetano N.S. Renew. and Sustain. Energy. 2010. 14: 217–232.
  54. Meinita M.D.N., Kang J.Y., Jeong G.T., Koo H.M., Park S.M., Hon Y.K. J. Appl. Phycol. 2011. 24: 857–862.
  55. Melis A. Plant Sci. 2009. 177: 272–280.
  56. Melis A., Zhang L., Forestier M., Ghirardi L., Seibert M. Plant Physiol. 2009. 122: 127–136.
  57. Morris I., Glover H.E., Yentsch C. Mar. Biol. 1974. 27: 1–9.
  58. Moya P., Skaloud P., Chiva S., Garcia-Breijo F.J., Reig-Arminana J., Vancurova L., Barreno E. Int. J. Syst. Evol. Microbiol. 2015. 65: 1838–1854.
  59. Naik S., Goud V.V., Rout P.K., Dalai A.K. Renew. Sust. Energy Rev. 2010. 14: 578–597.
  60. Pittman J.K., Dean A.P., Osundeko O. Biores. Technol. 2011. 102: 17–25.
  61. Posewitz M.C., King P.W., Smolinski S.L., Smith R.D., Ginley A.R., Ghirardi M.L., Seibert M. Biochem. Soc. Trans. 2005. 33: 102–103.
  62. Posewitz M.C., Smolinski S.L., Kanakagiri S., Melis A., Seibert M., Ghirardi M.L. Plant Cell. 2004. 16: 2151–2163.
  63. Radakovits R., Jinkerson R.E., Darzins A., Posewitz M.C. Amer. Soc. Microbiol. 2010. 9: 486–501.
  64. Rai L.C., Mallick N. Ecotoxicology. 1993. 2: 231–242.
  65. Rathmann R., Szklo A., Schaeffer R. Renew. Energy. 2010 35: 14–22.
  66. Renaud S.M., Parry D.L., Thinh L.V., Kuo C., Padovan A., Sammy N. J. Appl. Phycol. 1991. 3: 43–53.
  67. Rios S.D., Torres C.M., Torras C., Salvado J., Mateo-Sanz J.M., Jimenez L. Biores. Technol. 2013. 136: 617–625.
  68. Roessler G.P. J. Phycol. 1996. 26: 393–399.
  69. Round F.E. The Ecology of Algae. Cambridge: Cambridge Univ. Press, 1984.
  70. Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J., Lea-Smith D.J., Smith A.G. Curr. Opin. Biotechnol. 2010. 21: 277–286.
  71. Searchinger T., Heimlich R., Houghton R.A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T.H. Science. 2008. 319: 1238–1240.
  72. Selivanova E.A., Ignatenko M.E., Nemtseva N.V. J. Mikrobiol. Epidemiol. Immunobiol. 2014. (4): 72–76.
  73. Smith R.E.H., Cavaletto J.R., Eadie B., Gardner W. Mar. Ecol. Progr. Ser. 1993. 97: 19–29.
  74. Stauber J.L., Florence T.M. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 1987. 94: 511–519.
  75. Stöcker M. Angew. Chem. Int. Ed. 2008. 47: 9200–9211.
  76. Sukenik A., Carmeli Y., Berner T. J. Phycol. 1989. 25: 686–692.
  77. Sung M.G., Lee H., Nam K., Rexroth S., Rogner M., Kwon J.H., Yang J.W. Bioproc. Biosyst. Eng. 2015. 38: 517–522.
  78. Szczodrak J., Fiedurek J. Biomass Bioenergy. 1996. 10: 367–375.
  79. Takagi M., Watanabe K., Yamaberi K., Yoshida T. Appl. Microbiol. Biotechnol. 2000. 54: 112–117.
  80. Tan I., Man K., Keat T. Elsevier. 2013. 94: 561–566.
  81. Terry N., Abadia J. J. Plant Nutr. 1986. 6: 609–646.
  82. Tilman D., Hill J., Lehman C. Science. 2006. 314: 1598–1600.
  83. Vessey J.K. Plant Soil. 2003. 255: 571–586.
  84. Vigeolas H., Waldeck P., Zank T., Geigenberger P. Plant Biotechnol. 2007. 5: 431–441.
  85. Wong P.T.S., Chau Y.K. Toxicol. Ass. 1990. 5: 167–177.
  86. Xin L., Hu H.Y, Ke G., Sun Y.X. Biores. Technol. 2010. 101: 5494–5500.
  87. Yoon M.H., Lee Y.W., Lee C.H., Seo Y.B. Biores. Technol. 2012. 126: 198–201.