ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 3 of 9
Up
Algologia 2017, 27(4): 382–402
https://doi.org/10.15407/alg27.04.382
Physiology, Biochemistry, Biophysics

Fatty acid composition of cocoid green algae as a basis for energy and primary products potential. 1. Chlorella- and Acutodesmus-like microalgae (Chlorophyta)

Tsarenko P.M 1, Konischuk M.A.1, Korkhovoy V.I.2, Kostikov I.Yu.3, Blume Ya.B.2
Abstract

Bioproduction parameters of the strains of Chlorella- and Acutodesmus-like algae of the IBASU-A collection of the N.G. Kholodny Institute of Botany of the NAS of Ukraine were studied. The characteristic features of their growth and productivity, and the capacities of the Chlorella vulgaris Beij. and Acutodesmus dimorphus (Turpin) P. Tsarenko strains as objects of industrial cultivation were analyzed. The features of fatty acid (FA) composition of strains under standard conditions of laboratory cultivation are studied. The taxonomic (generic) specificity of the leading complex of FA has been revealed. The variability of the total lipid content in the representatives of the examined genera was found. The potential 1.5-fold increase in the amount of lipids or fractional amounts of certain fatty acids during the stationary growth phase of the culture under the influence of stress factors (nitrogen deficiency) is revealed.

Keywords: Chlorella, Acutodesmus, lipids, fatty acid composition, bioenergetics

Full text: PDF (Rus) 1.70M

References
  1. Abomohra A., Wagner M., El-Sheekh M.M., Hanelt D.J. Appl. Phycol. 2013. 25: 931–936.
  2. Algal culturing techniques. Ed. R.A. Andersen. Amsterdam: Elsevier Acad. Press, 2005. 578 p.
  3. Amin S. Energy Convers. Manag. 2009. 50: 1834–1840.
  4. Barbosa M.J., Wiffels R.H. Handbook of microalgae culture. 2nd ed. West Sussex: Weley-Blakwell, 2013. P. 578–586.
  5. Baros A.I., Goncalves A.L., Simoes M., Pires J.C.M. Renew. Sust. Energy Rev. 2015. 41: 1489–1500.
  6. Biodiesel – Feedstocks and Processing Technologies. Eds M. Stoytcheva, G. Montero. Rijeka: InTech., 2011. 740 p.
  7. Borisova E.V., Tsarenko P.M. Nova Hedw. 2004. 79(1–2): 127–134.
  8. Borowitzka M.A. Algae for biofuel and energy. Dortrecht; London: Springer, 2013. P. 255–264.
  9. Brennan L., Owende P. Renew. Sustain Energy Rev. 2010. 14(2): 557–577.
  10. Chantsungnoen T., Chisti Y. J. Appl. Phycol. 2016. 28: 2697–2705.
  11. Chaudhary R., Khattar J.I.S., Singh D.P. Int. J. Power Renew. Energy Syst. 2014. 1: 62–71.
  12. Chen Ch.-L., Huang Ch.-Ch., Ho K.-Ch., Hsiao P.-X., Wu M.-Sh., Chang J.-Sh. Biores. Technol. 2015. 194: 179–186.
  13. Cheng D., He Q. Front. Energy Res. 2014. 2: 1–26.
  14. Chernova N.I., Kiseleva S.V. Energiya: ekonomika, tekhnika, ekologiya. 2014. (8): 24–32.
  15. Chernova N.I., Kiseleva S.V., Korobkova T.P., Zaytsev S.I. Altern. Energet. and Ekol. 2008. 65(9): 68–74.
  16. Chernova N.I., Kiseleva S.V., Popel O.S. Teploenergetika. 2014. (6): 14–21.
  17. Chisti Y. Biotechnol Adv. 2007. 25: 94–306.
  18. Daliry S., Hallajisani A., Roshandeh J.M., Nouri H., Golzary A. Global J. Environ. Sci. Manag. 2017. 3(2): 217–230.
  19. Dvoretsky D.S., Dvoretsky S.I., Temnov M.S., Peshkov E.V., Akulinich E.I. Technologia poluchenia lipidov iz mikrovodorosley [Technology of receiving lipids from microalgae]. Tambov, 2015. 103 p.
  20. El-Sheekh M.M., El-Gamal A., Bastawess A.E., El-Bokhomy A. Production and characterization of biodiesel from the unicellular green alga Scenedesmus obliquus. In: Energy sources. Pt A: Recovery, utilization and environmental effects. Tanta: Taylor Francis Group, 2017. P. 1–11.
  21. Gour R.S., Chawla A., Singh H., Chauhan R.S., Kant A. PLOSone. 2016. 11(5): 1–16.
  22. Gouveia L. Microalgae as a feedstock for biofuels. Heidelberg, etc.: Springer, 2011. 69 p.
  23. Hamedy Sh., Mahdavi M.A., Gheshlaghi R. Biofuel Res. J. 2016. 10: 410–416.
  24. Harris P., James A.T. Biochem. J. 1969. 112(3): 325–330.
  25. Havrysh V. Prospect of renewable energy resource supply of agriculture. MOTROL. 2011. 13A: 107–116.
  26. Ho S.H., Chen W.M., Chang J.S. Biores. Technol. 2010. 101: 8725–8730.
  27. Kirpenko N.I., Usenko O.M., Musiy T.O. Hydrobiol. J. 2015a. 51(2): 44–50.
  28. Kirpenko N.I., Usenko O.M., Musiy T.O. Hydrobiol. J. 2015b. 51(5): 105–111.
  29. Kirpenko N.I., Usenko O.M., Musiy T.O. Hydrobiol. J. 2016a. 52(5): 54–64.
  30. Kirpenko N.I., Usenko O.M., Musiy T.O. Hydrobiol. J. 2016b. 51(2): 74–87.
  31. Kiseleva M.A. Metabolizm membrannykh lipidov u svobodnozhivushchikh i simbioticheskikh zelenikh vodorosley roda Pseudococcomyxa v usloviyakh defitsita fosfora [Metabolism of membrane lipids in free-living and symbiotic green algae of the genus Pseudococcomix in conditions of phosphorus deficiency]. Abstr. Ph.D. (Biol.). SPb, 2008. 23 p.
  32. Klyachko-Gurvich G.L., Semenenko V.E. Trudy MOIP. 1966. 24: 154–159.
  33. Klyachko-Gurvich G.L., Semenova A.N., Semenenko V.E. Fiziol. Rast. 1980. 27(2): 370–379.
  34. Klyachko-Gurvich G.L., Tsoglin L.N., Semenenko V.E. Rol nizshikh organizmov v krugovorote veshchestv v zamknutykh ekologicheskikh sistemakh: Mat. X Vsesoyuz. soveshch. [The role of lower organisms in the circulation of substances in closed ecological systems: Mat. X All-Union. Meet.] (Kanev, 1979). Kiev: Nauk. Dumka Press, 1979. P. 188–192.
  35. Korkhovoy V., Tsarenko P., Blume Ya. Curr. Biotechnol. 2016. 5(4): 256–265.
  36. Korkhovoy V.I., Blume Ya.B. Tsitol. i Genet. 2015. 47(6): 30–42.
  37. Krienitz L., Huss V.A.R., Bock Ch. Trends Plant Sci. 2015. 20(2): 67–69.
  38. Lenova L.I., Stupina V.V. Vodorosli v doochistke stochnykh vod [Algae in the post-treatment of wastewater]. Kiev: Nauk. Dumka Press, 1990. 180 p.
  39. Liang Y., Sarkany N., Cui Y. Biotechnol. Lett. 2009. 31(7): 1043–1049.
  40. Liu J. Algol. Stud. 2014. 145–146: 15–25.
  41. Liu J., Li Q., Liu Q., He M., Zhang L., Liu Y.D., Ding Y., Zhang Zh., Lin W., Song P., Li L., Huang Y., Han Ch. Algol. Stud. 2014. 145/146: 99–117.
  42. Livansky K., Doucha J. Algol. Stud. 2000. 97: 103–122.
  43. Metody fiziologo-biokhimicheskogo issledovaniya vodorosley v gidrobiologicheskoy praktike. Ed. A.V. Topachevskiy [Methods of physiological and biochemical study of algae in hydrobiological practice]. Kiev: Nauk. Dumka Press, 1975. 247 p.
  44. Michalak I., Chojnacka K. Eng. Life Sci. 2015. 15(2): 160–176.
  45. Milano J., Ong H.Ch., Masjuki H.H., Chong W.T., Lam M.K., Loh P.K., Vellayan V. Microalgae biofuels as an alternative to fossil fuel for power generation. Renew. Sust. Energy Rev. 2016. 58: 180–197.
  46. Mitra D., van Leeuwen J., Lamsal B. Algal Res. 2012. 1(1): 40–48.
  47. Muzafarov A.M., Taubaev T.T. Kultivirovanie i primenenie mikrovodorosley [Cultivation and application of microalgae]. Tashkent: FAN, 1984. 136 p.
  48. Novitskaya G.V., Salnikova E.B., Suvorova T.A. Fiziol. Biokhim. Kult. Rast. 1990. 22(3): 257–263.
  49. Perspektyvy vykorystannia mikrovodorostey u biotekhnologii. Ed. O.K. Zolotarova [Prospects for the use of algae in biotechnology]. Kyiv: Alterpress, 2008. 234 p.
  50. Ramachandra T.V., Sajina K., Supriya G. Ind. J. Sci. Technol. 2011. 4(11): 1488–1494.
  51. Richardson J.W., Johnson M.D., Outlaw J.L. Algal Res. 2012. 1: 93–100.
  52. Safi C., Zebib B., Merah O., Pontalier P.Y., Vaca-Garcia C. Renew. Sust. Energy Rev. 2014. 35: 265–278.
  53. Saifullah A.Z.A., Karim A.Md., Ahmad-Yazid A. Amer. J. Eng. Res. 2014. 3(3): 330–338.
  54. Škaloud P., Němcová Y., Pytela J., Bogdanov N.I., Bock Ch., Pickinpaugh S.H. Fottea. 2014. 14: 53–62.
  55. Soeder C.J., Hegewald E. Scenedesmus. In: Microalgal biotechnology. New York: Cambridge Univ. Press, 1988. P. 59–84.
  56. Spolaore P., Joannis-Cassan C., Duran E., Isambert A. J. Biosci. Bioeng. 2006. 101(2): 87–96.
  57. Sri-uam P., Linthong Zh., Powtongsook S., Kungvansaichol K., Pavasant P. Eng. J. 2014. 19(4): 14–24.
  58. Tamiya H. Rep. Jap. Microalg. Res. Inst. 1959. 1(2): 9–23.
  59. Trenkenshu R.P. Ekol. Mor. 2005. 67: 89–97.
  60. Tsarenko P., Borisova O., Blume Ya. Oceanol. and Hydrobiol. Stud. 2016. 73(1): 79–85.
  61. Tsarenko P., Borisova O., Blyum Ya. Dop. NAN Ukr. 2012. (1): 172–178.
  62. Tsarenko P., Borisova O., Blyum Ya. Visn. NAN Ukr. 2011. (5): 49–54.
  63. Tsarenko P., Borysova O. In: Actual Problems in Modern Phycology: V Int. Conf. Chisinau (Moldova). Abstracts. Kishinev, 2014. P. 114–117.
  64. Tsarenko P.M., Borisova E.V. Algologia. 2014. 24(3): 409–412.
  65. Tsarenko P.M., Borisova E.V., Konishchuk M.A. Scenedesmusovye vodorosli – perspektivnyi syrevoy resurs dlia biodizelia: Tez. dokl. [Scenedesmus as a perspective resource for biodizel]. Abstracts. Kiev, 2012. P. 321–322.
  66. Tsoglin L.N., Pronina N.A. Biotekhnologiya mikrovodorosley [Biotechnology of microalgae]. Moscow: Nauch. Mir Press, 2012. 184 p.
  67. Tsoglin L.N., Pults O., Shtorandt R., Akyev A.Ya. Algologia. 1999. 9(3): 73–81.
  68. Tsoglin L.N., Semenenko V.E. Rol nizshikh organizmov v krugovorote veshchestv v zamknutykh ekologicheskikh sistemakh: Mat. Vsesoyuz. Soveshch. [The role of lower organisms in the circulation of substances in a closed ecological systems]. Abstracts. Kiev: Nauk. Dumka Press, 1979. P. 294–303.
  69. Urmych E.M., Berdykulov Kh.A., Eshpulatov M.B. Algologia. 2008. 18(3): 347–352.
  70. Vereshchagin A.G., Klyachko-Gurvich G.L. Biochimia. 1965. 30(3): 543–550.
  71. Vladimirova M.G., Semenenko V.E. Intensivnaia kultura odnokletochnych vodorosley (instructia po pervichnym ispytaniam, vydeliaemych iz prirody i selekzioniruemych form fotoavtotrovnych odnokletochnych vodoroslei) [The intensive culture of monocelled seaweed (the instruction for primary tests, the forms of photoautotrophic monocelled seaweed allocated from the nature and selected)]. Moscow: Acad. Sci. USSR Press, 1962. 58 p.
  72. Yang J., Xu M., Zhang X., Hu Q., Sommerfeld M., Chen Y. Biores. Technol. 2011. 102(1): 159–165.
  73. Zhang Q., Hong Yu. Front. Environ. Sci. Eng. 2014. 8(5): 703–709.
  74. Zhu L. Biofuels, Bioprod. Bioref. 2015. 9: 801–814.