ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 3 of 8
Up
Algologia 2018, 28(2): 136–151
https://doi.org/10.15407/alg28.02.136
Physiology, Biochemistry, Biophysics

Production of storage polysaccharide paramylon in microalga Euglena gracilis Klebs (Euglena, Euglenophyceae)

Mokrosnop V.M.
Abstract

Unicellular flagellate microalga Euglena gracilis, depending on the conditions of cultivation, accumulates a large amount of reserve polysaccharide paramylon (β-1.3-glucan). This evidence provides need to consider it as a promising producer of this carbohydrate. The review presents data on the structure and synthesis of paramylon, as well as the features of its accumulation by E. gracilis cells. The degree of polysaccharide accumulation in cells depends on the conditions of cultivation including the presence of light, types of organic substrate, access to oxygen, etc. According to the literature data, the favorable conditions for stimulating the synthesis of paramylon in E. gracilis cells include periodic illumination of the culture, or lack of light, and the presence of an organic carbon source in the medium; in this capacity, glucose and fructose were the most effective. The lack of oxygen in the nutrient medium rebuilds the metabolism of E. gracilis cells from the synthesis of paramylon to the synthesis of waxes and is therefore not favorable for the accumulation of a polysaccharide. A comparison of the dynamics of paramylon accumulation in E. gracilis cells cultivated auto- and mixotrophically showed that the concentration of polysaccharide per cell was maximum in the first few days of cultivation in the presence of exogenous substrates. The addition of an organic nitrogen source additionally stimulates the accumulation of paramylon in the lag growth phase of the mixotrophic culture. During autotrophic cultivation, the content of paramylon does not noticeably change with the cultivation time. Analysis of the data on the use of by-products in the food industry as a source of nutrients for the growth of microalgae and accumulation of paramylon reveals that corn and potato extracts have the highest nutritional value for E. gracilis culture. The review also discusses the prospect of using paramylon in pharmacology and veterinary medicine as a stimulant and modulator of the immune system.

Keywords: Euglena gracilis, Euglenophyta, glucan, paramylon, mixotrophy

Full text: PDF 275K

References
  1. Ahmadinejad N., Dagan T., Martin W. Gene. 2007. 402(1): 35–39. https://doi.org/10.1016/j.gene.2007.07.023 https://www.ncbi.nlm.nih.gov/pubmed/17716833
  2. Barsanti L., Passarelli V., Evangelista V., Frassanito A.M., Gualtieri P. Nat. Prod. Rep. 2011. 28: 457–466. https://doi.org/10.1039/c0np00018c https://www.ncbi.nlm.nih.gov/pubmed/21240441
  3. Barsanti L., Vismara R., Passarelli V., Gualtieri P. J. Appl. Phycol. 2001. 13: 59–65. https://doi.org/10.1023/A:1008105416065
  4. Bashir K.M.I., Choi J.S. Int. J Mol. Sci. 2017. 18(9): 1906. https://doi.org/10.3390/ijms18091906
  5. Baumer D., Preisfeld A., Ruppel H.G. J. Phycol. 2001. 37: 38–46. https://doi.org/10.1046/j.1529-8817.2001.037001038.x
  6. Briand J., Calvayrac R. J. Phycol. 1980. 16(2): 234–239. https://doi.org/10.1111/j.1529-8817.1980.tb03024.x
  7. Briand J., Calvayrac R., Laval-Martin D., Farineau J. Planta. 1981. 151: 168–175. https://doi.org/10.1007/BF00387819 https://www.ncbi.nlm.nih.gov/pubmed/24301725
  8. Calvayrac R., Laval-Martin D., Briand J., Farineau J. Planta. 1981. 153: 6–13. https://doi.org/10.1007/BF00385311 https://www.ncbi.nlm.nih.gov/pubmed/24276700
  9. Cheirsilp B., Torpee S. Biores. Technol. 2012. 110: 510–516. https://doi.org/10.1016/j.biortech.2012.01.125 https://www.ncbi.nlm.nih.gov/pubmed/22361073
  10. Coleman L.W., Rosen B.H., Schwartzbach S.D. Plant Cell Physiol. 1988a. 29(3): 423–432.
  11. Coleman L.W., Rosen B.H., Schwartzbach S.D. Plant Cell Physiol. 1988b. 29(3): 423–432.
  12. Cook J.R. J. Protozool. 1963. 10: 436–444. https://doi.org/10.1111/j.1550-7408.1963.tb01703.x https://www.ncbi.nlm.nih.gov/pubmed/14074440
  13. Cook J.R. Plant Cell Physiol. 1965. 6: 301–307. https://doi.org/10.1093/oxfordjournals.pcp.a079101
  14. Freimund S., Sauter M., Kappeli O., Dutler H. Carbohydrate Polym. 2003. 54: 159–171. https://doi.org/10.1016/S0144-8617(03)00162-0
  15. Garlaschi F.M., Garlaschi A.M., Lombardi A., Forti G. Plant Sci. Lett. 1974. 2: 29–39. https://doi.org/10.1016/0304-4211(74)90035-2
  16. Grimm P., Risse J.M., Cholewa D., Muller J.M., Beshay U., Friehs K., Flaschel E. J. Biotechnol. 2015. 215: 72–79. https://doi.org/10.1016/j.jbiotec.2015.04.004 https://www.ncbi.nlm.nih.gov/pubmed/25910451
  17. Hutner S.H., Zahalsky A.C., Aaronson S., Baker H., Frank O. Methods Cell Physiol. 1966. 2: 217–228.
  18. Ivusic F., Santek B. BioprocessBiosyst Eng. 2015. 38(6): 1103–1112. https://doi.org/10.1007/s00449-015-1353-3 https://www.ncbi.nlm.nih.gov/pubmed/25601569
  19. Kiss J.Z., Vasconcelos A.C., Triemer R.E. J. Phycol. 1986. 22: 327–333. https://doi.org/10.1111/j.1529-8817.1986.tb00031.x
  20. Kiss J.Z., Vasconcelos C.A., Triemer R.E. J. Phycol. 1988. 24: 152–157.
  21. Marchessault R.H., Deslandes Y. Carbohydrate Res. 1979. 75: 231–242. https://doi.org/10.1016/S0008-6215(00)84642-X
  22. Marechal L.R., Goldemberg S.H. J. Biol. Chem. 1964. 239(10): 3163–3167. https://www.ncbi.nlm.nih.gov/pubmed/14245356
  23. Marzullo G., Danforth W.F. J. Gen. Microbiol. 1964. 34: 21–29. https://doi.org/10.1099/00221287-34-1-21 https://www.ncbi.nlm.nih.gov/pubmed/14121217
  24. Michel G., Tonon T., Scornet D., Cock J.M., Kloareg B. New Phytol. 2010. 188(1): 67–81. https://doi.org/10.1111/j.1469-8137.2010.03345.x https://www.ncbi.nlm.nih.gov/pubmed/20618908
  25. Mokrosnop V.M. Stud. Biol. 2016. 10(3): 141–148.
  26. Mokrosnop V.M., Polishchuk A.V., Zolotareva E.K. Appl. Biochem. Microbiol. 2016. 52(2): 216–221. https://doi.org/10.1134/S0003683816020101
  27. Mokrosnop V.M., Polishchuk O.V., Zolotarova O.K. Dop. NAN Ukrainy. 2015a. (10): 77–84.
  28. Mokrosnop V.M., Polishchuk O.V., Zolotarova O.K. Mikrobiol. biotekhnol. 2015b. 27(3): 49–56.
  29. Mokrosnop V.M., Zolotareva E.K. Biotechnol. Acta. 2014. 7(2): 26–33. https://doi.org/10.15407/biotech7.02.026
  30. Mykhaylenko N.F., Syvash O.O., Tupik N.D., Zolotareva O.K. Photosynthetica. 2004. 42(1): 105–110. https://doi.org/10.1023/B:PHOT.0000040577.30424.d1
  31. Nicolas P., Freyssinet G., Nigon V. Plant Physiol. 1980. 65: 631–634. https://doi.org/10.1104/pp.65.4.631 https://www.ncbi.nlm.nih.gov/pubmed/16661253 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC440397
  32. O`Neill E.C., Trick M., Hill L., Rejzek M., Dusi R.G., Hamilton C.J., Zimba P.V., Henrissat B., Field R.A. Mol. BioSyst. 2015. 11: 2808–2820. https://doi.org/10.1039/C5MB00319A https://www.ncbi.nlm.nih.gov/pubmed/26289754
  33. Ogbonna J.C., Ichige E., Tanaka H. Appl. Microbiol. Biotechnol. 2002. 58: 532–538. https://doi.org/10.1007/s00253-001-0901-8 https://www.ncbi.nlm.nih.gov/pubmed/11954802
  34. Rezic T., Filipovic J., Santek B. Photo-mixotrophic cultivation of algae Euglena gracilis for lipid production. Agriculturae Conspectus Scientificus. 2013. 78: 65–69.
  35. Rodriguez-Zavala J.S., Ortiz-Cruz M.A., Mendoza-Hernanderz G. J. Appl. Microbiol. 2010. 109: 2160–2172. https://doi.org/10.1111/j.1365-2672.2010.04848.x https://www.ncbi.nlm.nih.gov/pubmed/20854454
  36. Sanrek B., Felski M., Friehs K., Lotz M., Flaschel E. Eng. Life Sci. 2010. 10(2): 165–170.
  37. Sanrek B., Felski M., Friehs K., Lotz M., Flaschel E. Eng. Life Sci. 2009. 9(1): 23–28. https://doi.org/10.1002/elsc.200700032
  38. Shnyukova E.I., Zolotareva E.K. Algologia. 2015. 25(1): 1–20.
  39. Shnyukova E.I., Zolotareva E.K. Algologia. 2017. 27(1): 22–44. https://doi.org/10.15407/alg27.01.022
  40. Shokri H., Asadi F., Khosravi A.R. Natur. Product Res. 2008. 22(5): 414–421. https://doi.org/10.1080/14786410701591622 https://www.ncbi.nlm.nih.gov/pubmed/18404561
  41. Sivash A.A., Los S.I., Fomishina R.N., Zolotareva E.K. Int. J. Algae. 2004. 6(1): 50–60. https://doi.org/10.1615/InterJAlgae.v6.i1.60
  42. Stepanov S.S., Zolotareva E.K. J. Appl. Phycol. 2015. 27(4): 1509–1516. https://doi.org/10.1007/s10811-014-0445-9
  43. Stepanov S.S., Zolotareva E.K. Ukr. Biochem. 2011. 83(4): 5–15.
  44. Takeda T., Nakano Y., Takahashi M., Konno N., Sakamoto R.A., Marukawa Y., Yoshida E., Ishikawa T., Suzuki K. Phytochemistry. 2015. 116: 21–27. https://doi.org/10.1016/j.phytochem.2015.05.010 https://www.ncbi.nlm.nih.gov/pubmed/26028521
  45. Yamane Y., Utsunomiya T., Watanabe M., Sasaki K. Biotechnol. Lett. 2001. 23: 1223–1228. https://doi.org/10.1023/A:1010573218863
  46. Yoval-Sanchez B., Jasso-Chavez R., Lira-Silva E., Moreno-Sánchez R., Rodriguez-Zavala J.S. J. Bioenerg. Biomembr. 2011. 43: 519–530. https://doi.org/10.1007/s10863-011-9373-4 https://www.ncbi.nlm.nih.gov/pubmed/21833603
  47. Zolotarova O., Shnyukova Ye. Visn. NAN Ukrainy. 2010. (4): 1020.
  48. Zolotarova O.K. Shnyukova Ye.I., Sivash O.O., Mikhaylenko N.F. Perspektivi vikoristannya mikrovodorostey u biotekhnologiyi [Prospects for the use of microalgae in biotechnology]. Kyiv: Alterpres, 2008 p.