ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 6 of 8
Up
Algologia 2018, 28(2): 182–201
https://doi.org/10.15407/alg28.02.182
Applied Algology

Samples of cyanobacterium Calothrix sp. ISC 65 collected from oil polluted regions respond to combined effects of salinity, extremely low-carbon dioxide concentration and irradiance

Amirlatifi H.S., Shokravi S., Sateei A., Golsefidi M.A., Mahmoudjanlo M.
Abstract

Epidaphic and endaphic cyanobacteria of oil polluted regions of southern Iran live under extreme environmental conditions including extremely low irradiance, limited carbon dioxide concentration and high degrees of salinity. Calothrix sp. ISC 65 is an unexplored strain which seems common in southern Iran and near the Persian-Gulf. Until now, we have no report about the basic and applied aspects of such a strain. In this research Calothrix sp. ISC 65 has been characterized physiologically by the combination of extremely low irradiance (2 µE·m-2·s-1), different salinities (0%, 0.5%, and 1%), and extremely limited carbon dioxide concentration (no aeration, no carbon dioxide enrichment). Spectroscopically, an analysis showed that 1% salinity after 96 hours caused a significant increase in growth rate, chlorophyll, and phycobilisome production. Lower salinity caused about a 40% decrease of phycobilisome production even after 24 hours. Phycocyanin seemed the main part of phycobilisome but salinity at 1% caused phycoerythrin and allophycocyanin production excitation as the outer part of the photosynthetic antenna as well. Results of long-time oxygen production supported the above. Increasing salinity to 0.5% and 1% caused a significant increase of photosynthetic long time activity. Differences between 0.5% and 1% were not significant. Increasing salinity affected the CO2 concentration mechanism and caused more activation. Activation of the CO2 concentration mechanism appeared as the basic strategy supporting the high rate of photosynthesis providing enough material necessary for photosynthetic processes. Results of a spectrofluorometric analysis showed that the PSI : PSII ratio increased by increasing salinity and reached the highest level after 96 hours. A surface response plot analysis showed that low salinity was able to increased the ratio even more but only for a very short time after inoculation. Salinity at the level of 0.5% caused increases in nitrogenase activity and the excitation of heterocyst production. This was also true for salinity levels of 1% though the heterocyst production declined only a little. Fourier transform infrared analysis (FTIR) analysis showed that 1% salinity caused the most outstanding configuration changes of the functional groups. The differences in functional group patterns between culture media with no additional salinity and 1% were completely obvious. Differences around asymmetric carbon vibration, lipid stretching and OH bending of the polysaccharides occurred at 1% salinity treatments. Collectively, 0.5 to 1% salinity caused the most physiological activities in Calothrix sp. ISC 65 at extremely limited irradiance and carbon dioxide concentration.

Keywords: Calothrix, cyanobacteria, dissolved inorganic carbon, limited irradiance, oil polluted, regions, salinity

Full text: PDF (Rus) 335K

References
  1. Amirlatifi F., Soltani N., Saadatmand S., Shokravi Sh., Dezfulian M. Crude oil-induced morphological and physiological responses in cyanobacterium Microchaete tenera ISC13. Intern. Journ. Envir. Res. 2013. 7(4): 1007–1014.
  2. Bajwa K., Bishnoi N. R. Osmotic stress induced by salinity for lipid overproduction in batch culture of Chlorella pyrenoidosa and effect on others physiological as well as physicochemical attributes. J. Algal Biomass Utln. 2015. 6: 26–34.
  3. Bhadauriya P., Gupta R., Singh S., Bisen P.S. Physiological and biochemical alterations in a diazotrophic cyanobacterium Anabaena cylindrica under NaCl stress. Curr. Microbiol. 2007. 55(4): 334–8.
  4. Borah D., Vimala N., Thajuddin N. Biochemical composition and chemotaxonomy of cyanobacteria isolated from Assam, North-East India. Phykos. 2016. 46 (2): 33–41.
  5. Boussiba S., Sandbank E., Shelef G., Cohen Z., Vonshak A., Ben-Amotz A., Richmond A. Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors. Aquaculture. 1988. 72(3-4): 247–253.
  6. Burns R., Danielle J., MacDonald C., Mc Ginn J.P., Campbell D.A. Inorganic carbon repletion disrupts photosynthetic acclimation low temperature in the cyanobacteria Synechococcus elongatus. J.Phycol. 2005. 41: 322–334.
  7. Cohen Z., Margheri M. C., Tomaselli L. Chemotaxonomy of cyanobacteria. Phytochemistry. 1995. 40(4): 1155–1158.
  8. Deblois C.P., Marchand A., Juneau P. Comparison of photoacclimation in twelve freshwater photoautotrophs (chlorophyte, bacillaryophyte, cryptophyte and cyanophyte) isolated from a natural community. PLoS ONE. 2013. 8(3): e57139.
  9. Dehiab R.B., Hatem Ben Quada, Hamadi Boussseta, Fabrice Franck, Amor Elbed, Michel Brouuers.Growth, fluorescence, photosynthesis O2 production and pigment content of salt adapted cultures of Arthrospira (Spirulina) platensis. J. Appl Phycol. 2007. 19: 293–301.
  10. Dezfulian M., Soltani N., Shokravi Sh., Baftehchi L., Alnajar N., Ehsan S., Abolhasani Soorki A. Ecophysiological characters and PCR-identification of Calothrix sp. ISC 65 isolated from south of Iran. NCBI. 2010: GU591756.
  11. Desikachary T.V. Cyanophyta. Indian council of agricultural research, New Delhi, 1959.
  12. Fernandez-Valiente E., Leganés F. Regulatory effect of pH and incident irradiance on the levels of nitrogenase activity in the cyanobacterium Nostoc UAM 205. Journ. Plant Physiol. 1989.135: 623–627.
  13. Fraser J.M., Tulk S.E., Jeans J.A., Campbell D.A., Bibby T.S., Cockshutt A.M. Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS ONE. 2013. 8(3): e59861.
  14. Gan F., Shen G., Bryant D.A. Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life. 2014. 5(1): 4–24.
  15. Ghobadian S., Ganjidoost H., Ayati B., Soltani N. Evaluation of the effects of aeration cycle and culture medium concentration on biomass qualitative and quantitative indices in microalga Spirulina as candidate for wastewater treatment. J. Aquat. Ecol. 2015. 5(2): 87–99.
  16. Gugger M.F., Hoffmann L. Polyphly of true branching cyanobacteria (Stigonematales). Int. J. Syst. Evol. Microbiol. 2004. 54: 349–357.
  17. Inoue-Kashino N., Kashino Y., Satoh K., Terashima I., Pakrasi H.B. PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry. 2005. 44(36): 12214-12228.
  18. Iranshahi S., Nejadsattari T., Soltani N., Shokravi Sh., Dezfulian M. The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iran. J. Fish. Sci. 2014. 13(4): 907–917.
  19. John D.M., Whitton B.W., Brook A.J. The Freshwater Algal Flora of The British Isles. Cambridge: Cambridge Univ. Press, 2003.
  20. Kaushik B. D. Laboratory methods for blue-green algae. New Delhi: Assoc. Publ. Company, 1987.
  21. Kenne G., Van der Merwe D. Classification of toxic cyanobacterial blooms by Fourier-transform infrared technology (FTIR). Adv. Microbiol. 2013. 3: 1–8.
  22. Kiaei E., Soltani N., Mazaheri Assadi M., Khavarinegad R., Dezfulian M. Study of optimal conditions in order to the use of the cyanobacteria Synechococcus sp. ISC106 as a candidate for biodiesel production. J. Aquat. Ecol. 2013. 2(4): 40–51.
  23. Komarek J., Anagnostidis K. Modern approach to the classification system of Cyanophytes. 4 – Nostocales. Archiv Hydrobiol. Suppl. 1989. 82(3): 247–345.
  24. Lu C., Vonshak A. Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J. Appl. Phycol. 1999. 11(4): 355–359.
  25. Lu C., Vonshak A. Effects of salinity stress on photosystem II function in cyanobacteria Spirulina platensis cells. Physiol. Plant. 2002. 114(3): 405–413.
  26. Müller C., Reuter W., Wehrmeyer W., Dau H., Senger H. Adaptation of the photosynthetic apparatus of Anacystis nidulans to irradiance and CO2-concentration. Bot. Acta. 1993. 106: 480–487.
  27. Ogawa T., Sonoike K. Effects of bleaching by nitrogen deficiency on the quantum yield of photosystem II in Synechocystis sp. PCC 6803 revealed by Chl fluorescence measurements. Plant and Cell Physiol. 2016. 57(3): 558–567.
  28. Poza-Carrión C., Fernández-Valiente E., Piñas F.F., Leganés F. Acclimation to photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. J. Plant Physiol. 2001. 158: 1455–1461.
  29. Prescott G.W. Algae of the western great lake area. W.M.C. Brown Company Publ., 1962.
  30. Ratledge C., Wilkinson S.G. An overview of microbial lipids. In: Microbial lipids. Vol. 1. Eds C. Ratledge, S.G. Wilkinson. London: Acad. Press. 1988. Pp. 3–22.
  31. Safaie Katoli M., Nejad-Sattari T., Majd A., Shokravi Sh. Physiological, morphological and ultrastructural responses of cyanobacterium Fischerella sp. FS 18 to combination effects of extreme conditions. J. Appl. Environ. Biol. Sci. 2015. 5(1): 135–149.
  32. Shokravi Sh., Amirlatifi F., Safaie M., Ghasemi Y., Soltani N. Some physiological responses of Nostoc sp. JAH 109 to the combination effects of limited irradiance, pH and DIC availability. Quart. J. Plant Sci. Res. 2006. 1(3): 55–63.
  33. Shokravi Sh., Soltani N., Baftechi L. Cyanobacteriology. Tehran: Islamic Azad. Univ. Publ., 2007.
  34. Shokravi Sh., Soltani N. Acclimation of the Hapalosiphon sp. FS 56 (Cyanoprokaryota) to combination effects of dissolved inorganic carbon and pH at extremely limited irradiance. Int. J. Algae. 2011. 13 (4): 379–391.
  35. Shokravi Sh., Amirlatifi H.S., Pakzad A., Abbasi B., Soltani N. Physiological and morphological responses of unexplored Cyanoprokaryota Anabaena sp. FS 77 collected from oil polluted soils under a combination of extreme conditions. Int. J. Algae. 2014, 16(2): 164–180.
  36. Soltani N., Khavari-Nejad R.A., Tabatabaei Yazdi M., Shokravi Sh., Fernández-Valiente E. Physiological and antimicrobial characterizations of some cyanobacteria in extreme environments. Abstr. Ph.D. (Biol.) Thesis, 2005.
  37. Soltani N., Khavari-Nejad R., Tabatabaie M., Shokravi Sh., Fernandez Valiente E.F. Variation of nitrogenase activity, photosynthesis and pigmentation of cyanobacteria Fischerella ambigua strain FS18 under different irradiance and pH. World J. Microbiol. Biotechnol. 2006. 22 (6): 571–577.
  38. Soltani N., Khavarinejad R.A., Shokravi Sh. The effect of ammonium on growth and metabolism of soil cyanobacteria Fischerella sp. FS18 Quart. J. Plant Sci. Res. 2006. 1 (1): 48–53.
  39. Soltani N., Khavarinejad R.A., Tabatabaei Yazdi M., Shokravi Sh. Growth and metabolic feature of cyanobacteria Fischerella sp. FS18 in different combined nitrogen sources. Iran. J. Sci. 2007. 18(2): 123–128.
  40. Soltani N., Zarrini G., Ghasemi Y., Shokravi Sh., Baftechi L. Characterization of soil cyanobacterium Fischerella sp. FS18 under NaCl stress. J. Biol. Sci. 2008. 7(6): 931–936.
  41. Soltani N., Siahbalaie R., Shokravi Sh. Taxonomical characterization of Fischerella sp. FS18. A multidisciplinary approach. Int. J. Algae. 2011. 21 (9): 48–55.
  42. Soltani N., Baftechi L., Dezfulian M., Shokravi Sh., Alnajar N. Molecular and morphological characterization of oil polluted microalgae. Int. J. Environ. Res. 2012. 6(2): 481–492.
  43. Soltani N., Iranshahi S., Nazari F., Bolfion M., Rahmani M., Ebrahimi B. The effect of different light intensities on physiological and biochemical responses in cyanobacterium Schizothrix vaginata under naphtalene treatment. J. Aquat. Ecol. 2015. 4(4): 32–25.
  44. Subashchandrabose S. R., Ramakrishnan B., Megharaj M., Venkateswarlu K., Naidu R. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 2013. 51: 59–72.
  45. Thomas D. N. Photosynthetic microbes in freezing deserts. Trends in Microbiol. 2005. 13 (3): 87–88.
  46. Tiffany L., Britton M. The Algae of Illinois. New York: Hafner Publ. Co., 1971.
  47. Tiwari S., Mchanty P. Cobalt induced changes in photosystem activity in Synechocystis PCC 6803: Alterations in energy distribution and stoichiometry. Photosynt. Res. 1996. 50(3): 243–256.
  48. Tyler D.B., MacKenzie R., Burns A., Campbell D. A. Carbon Status Constrains Light Acclimation in the Cyanobacterium Synechococcus elongatus. Plant Physiol. 2004. 136: 3301–3312.
  49. Zeng M.-T., Vonshak A. Adaptation of Spirulina platensis to salinity-stress. Comparative biochemistry and physiology. Pt A. Mol. Integr. Physiol. 1998. 120(1): 113–118.
  50. Zorz J.K., Allanach J.R., Murphy C.D., Roodvoets MS., Campbell D.A., Cockshutt A.M. The RUBISCO to photosystem II ratio limits the maximum photosynthetic rate in picocyanobacteria. Life. 2015. 5(1): 403–417.