ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 7 of 8
Up
Algologia 2018, 28(2): 202–207
https://doi.org/10.15407/alg28.02.202
Applied Algology

Bioethanol production from a marine alga, Enteromorpha flexuosa (Wulfen) J. Agardh (Chlorophyta)

Smith Th.1 & Smith J.2
Abstract

Sustainable feedstocks are solutions to growing energy demands. Enteromorpha flexuosa was collected (December 2017) at the Bayshore Live Oak Park, Charlotte County, FL, USA. Enteromorpha flexuosa was oven dried and fermented 544 g dry weight. We used α- and β-amylase to break down starch and dextrin. After distillation, 35 mL of distillate were produced and corresponded to 6.4% of the dry weight. Ethanol was measured at 8.8% v/v and methanol at 0.05% v/v using gas chromatography. Ethanol was the most abundant at 99.2% and the rest was made up of methanol. Marine algae are good sources of biomass for biofuel production and should be explored further.

Keywords: bioethanol, Entrermorpha flexuosa, marine algae, biofuel, Florida, seaweed

Full text: PDF (Rus) 132K

References
  1. Adams J., Gallagher J., Donnison I. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 2009. 21: 569–574. https://doi.org/10.1007/s10811-008-9384-7
  2. Buckee G., Mundy A. Determination of Ethanol in Beer by Gas Chromatography (Direct Injection)-Collaborative Trial. J. Inst. Brew. 1993. 99: 381–384. https://doi.org/10.1002/j.2050-0416.1993.tb01176.x
  3. Chesters C., Bull A. The enzymic degradation of laminarin. 1. The distribution of laminarinase among micro-organisms. Biochem. J. 1963. 86(1): 28–31. https://doi.org/10.1042/bj0860028 https://www.ncbi.nlm.nih.gov/pubmed/14020681 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201706
  4. Elliott K. Biofuel Policies: Fuel versus Food, Forests, and Climate. CGD Climate and Forest Paper Series #18. Center Global Develop., Washington DC, 2015.
  5. Food and Agriculture Organization of the United National. The State of World Fisheries and Aquaculture. Rome, Italy: FAO, 2014.
  6. Isa A., Mishima Y., Takimura O., Minowa T. Preliminary study on ethanol production by using macro green algae. J. Jpn. Inst. Energy. 2009. 88: 912–917. https://doi.org/10.3775/jie.88.912
  7. John R., Anisha G., Nampoothiri K., Ashok Pandey. Micro- and macroalgal biomass: A renewable source for bioethanol. Biores. Technol. 2011. 102: 186–193. https://doi.org/10.1016/j.biortech.2010.06.139 https://www.ncbi.nlm.nih.gov/pubmed/20663661
  8. Kumar S., Gupta R., Kumar G., Sahoo D., Kuhad R. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Biores. Technol. 2013. 135: 150–156. https://doi.org/10.1016/j.biortech.2012.10.120 https://www.ncbi.nlm.nih.gov/pubmed/23312437
  9. Larsen D.P., Olsen A.R., Stevens D.L. Using a master sample to integrate stream monitoring programs. J. Agricult., Biol. and Environ. Stat. 2008. 13(3): 243–254. https://doi.org/10.1198/108571108X336593
  10. McCracken D., Cain J. Amylose in Floridean Starch. New Phytol. 1981. 88(1): 67–71. https://doi.org/10.1111/j.1469-8137.1981.tb04568.x
  11. McKeown N. Phthalocyanine Materials: Synthesis, Structure and Function. Chemistry of Solid State Materials Series. Cambridge: Cambridge Univ. Press, 1998.
  12. Nikolaisen L. Energy Production from Marine Biomass (Ulva lactuca), PSO Project No., Vol. 50, 2008-1. Danish Technol. Inst., Denmark, 2011.
  13. Roberts P., Whelan W. The mechanism of carbohydrase action. 5. Action of human salivary α-amylase on amylopectin and glycogen. Biochem J. 1960. 76(2): 246–253. https://doi.org/10.1042/bj0760246 https://www.ncbi.nlm.nih.gov/pubmed/14437832 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1204700
  14. Schenk P., Thomas-Hall S., Stephens E., Marx U., Mussgnug J., Posten C., Kruse O., Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 2008. 1: 20–43. https://doi.org/10.1007/s12155-008-9008-8
  15. Straker L. Sargassum Seaweed Research. St. George: New Grenada, 2015.
  16. Wei N., Quarterman J., Jin Y. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnol. 2013. 31(2): 70–77. https://doi.org/10.1016/j.tibtech.2012.10.009 https://www.ncbi.nlm.nih.gov/pubmed/23245657
  17. Yanagisawa M., Nakamura K., Ariga O., Nakasaki K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Proc. Biochem. 2011. 46(11): 2111–2116. https://doi.org/10.1016/j.procbio.2011.08.001
  18. Zemke-White W., Clements K. Chlorophyte and rhodophyte starches as factors in diet choice by marine herbivorous fish. J. Exp. Mar. Biol. and Ecol. 1999. 240(1): 137–149. https://doi.org/10.1016/S0022-0981(99)00056-8