ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 8
Up
Algologia 2018, 28(4): 363–386
https://doi.org/10.15407/alg28.04.363
Systematics, Phylogeny and Problems of Evolution of Algae

Diversity of terrestrial algae of Cape Kazantip (the Sea of Azov, Ukraine) and some remarks on their phylogeny and ecology

Mikhailyuk T.1, Vinogradova O.1, Glaser K.2, Demchenko E. 1. & Karsten U.2
Abstract

The article summarizes the results of a study on terrestrial algae of Cape Kazantip, conducted during summer 2012 on the territory of the Kazantip Nature Reserve and its environs. Samples of biological soil crusts from the coquina beach and clay scree, as well as lithophytic algal communities, were studied by direct light microscopy with subsequent culturing. For a number of strains of cyanobacteria and eukaryotic algae, phylogenetic analyses based on the nucleotide sequence of the 16S/18S rRNA gene, as well as the 16S-23S ITS region/ITS-1,2 were performed. These data clarified species identity and taxonomic position, as well as to make a number of interesting floristic records, supplementing the algal flora of Ukraine with new taxa of the genera Oculatella Zammit, Billi et Albertano, Timaviella Sciuto et Moro, Roholtiella Bohunická, Pietrasiak et Johansen, Bracteacoccus Tereg, Interfilum Chodat. In total 73 species were identified from the divisions of Cyanoprokaryota (35), Chlorophyta (23), Streptophyta (5), Ochrophyta (10). Litophyton and soil crusts differed markedly in species diversity, taxonomic structure and the dominant algal complex. Only 30.1% of the identified species were found in both types of habitats, while 41 species occurred in rock communities. Here, a high diversity of cyanobacteria, especially representatives of the order Nostocales and Chroococcales, as well as Trebouxiophyceae and Ulvophyceae among green algae, were recorded. On limestone, in the chasmoendolitic communities dominant species were G. punctata Nägeli and Ctenocladus circinnatus Borzi while on the rock surface Desmococcus olivaceus (Pers. ex Ach.) J.R. Laundon and Trentepohlia sp. dominated. In the hypolithic communities on quartz, filamentous cyanobacteria prevailed. In biological crusts on the conquina and clay, 54 species were identified. Cyanobacteria were leading both in the number of species (42.6% of the total diversity) and abundance. Species of genera Microcoleus Desmazières ex Gomont, Coleofasciculus Siegesmund, Johansen et Friedl, Hassallia Berkeley ex Bornet et Flahault, Nostoc Vaucher ex Bornet et Flahault, Scytonema Agardh ex Bornet et Flahault and some others dominated in the crusts studied. Chlorophyta (33.3%), among which the proportion of representatives of the class Chlorophyceae increased markedly, were the second in species diversity, but their abundance was low. Only once Klebsormidium mucosum (J.B. Petersen) Lokhorst (Streptophyta) dominated in a crust on the clay scree. Crusts from the conquina had wider representativeness of cyanobacteria and algae (45 species, an average of 13.5 species per sample) as compared with clay screes (24/9.6). Among species discovered in the present study only 13.7% were previously cited for this territory.

Keywords: cyanobacteria, microalgae, terrestrial communities, lithophyton, soil crusts, Cape Kazantip, new records, Ukraine, 16S/18S rRNA, 16S-23S ITS region/ITS-1, 2

Full text: PDF (Rus) 4.00M

References
  1. Algae: Reference Book. Eds S.P. Wasser. Kiev: Naukova Dumka Press, 1989. [Rus.]
  2. Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Eds P.M. Tsarenko, S. Wasser, E. Nevo. Ruggell: A.R.G. Gantner Verlag K.-G., 2009. Vol. 2. 413 p.; 2011. Vol. 3. 511 p.
  3. Akaike H. Automat. Control, IEEE Trans. on Automat. Control. 1974. 19: 716–723.
  4. Anagnostidis K. Preslia (Praha). 2001. 73: 359–376.
  5. Anagnostidis K., Komárek J. Arch. Hydrobiol. 1988. 80(1–4): 327–472.
  6. Arino X., Hernández Mariné M., Saiz-Jimenez C. Phycologia. 35(3): 183–189, 1996. https://doi.org/10.2216/i0031-8884-35-3-183.1
  7. Biological Soil Crusts: An Organizing Principle in Drylands. Eds B. Weber, B. Büdel, J. Belnap, A. Cham. Switzerland: Springer Int. Publ., 2016.
  8. Biological soil crusts: structure, function, and management. Eds J. Belnap, O.L. Lange. Berlin: Springer, 2003. https://doi.org/10.1007/978-3-642-56475-8
  9. Bischoff H.W., Bold H.C. Univ. Texas Publ. 1963. 6318: 1–95.
  10. Blinn D.W. Canad. J. Bot. 1971. 49: 735–743. https://doi.org/10.1139/b71-112
  11. Bondarenko A.V. In: Actual problems of modern algology: Abstr. Int. Conf. Young Sci. (Scholkino, June 18–22, 2013). Scholkino, 2013. Pp. 31–32. [Rus.]
  12. Bondarenko A.V. Benthic microalgae of the Crimean coast of the Sea of Azov: Ph.D. (Biol.). Abstract. Sevastopol, 2017. [Rus.]
  13. Bondarenko A.V. Mor. Ecol. J. 2012a. 11(3): 25–32.
  14. Bondarenko A.V. In: Actual problems of modern algology: IV Int. Conf. Kiev. 2012b. Pp. 35–37. [Rus.]
  15. Borisova O.V., Palamar-Mordvintseva G.M., Tsarenko P.M. Flora of algae of Ukraine. Vol. 12. Charophyta. Issue 2. Classes Mesostigmatophyceae, Klebsormidiophyceae, Coleochaeto-phyceae, Charophyceae. Kyiv, 2016. [Ukr.]
  16. Büdel B. Progr. Bot. 2002. 63: 386–404. https://doi.org/10.1007/978-3-642-56276-1_16
  17. Büdel B., Darienko T., Deutschewitz K., Dojani S., Friedl Th., Mohr K.I., Salisch M., Reisser W., Weber B. Microbial Ecol. 2009. 57: 229–247. https://doi.org/10.1007/s00248-008-9449-9 https://www.ncbi.nlm.nih.gov/pubmed/18850242
  18. Chapin F.S. III, Walker B.H., Hobbs R.J., Hooper D.U., Lawton J.H., Sala O.E., Tilman D. Science. 1997. 277: 500–503. https://doi.org/10.1126/science.277.5325.500
  19. Darienko T.M. Algologia. 2000. 10(1): 54–62.
  20. Darienko T.M., Mikhailyuk T.I., Voytsekhovich A.A. Urboecosystems: problems and perspectives of development: III Int. Conf. Ishim: P.P. Ershova Press, 2008. Pp. 85–87. [Rus.]
  21. Darienko T.M. Ukr. Bot. J. 2012. 69(1): 111–124.
  22. Darienko T., Gustavs L., Pröschold T. Phytotaxa. 2017. 324: 001–041.
  23. Darienko T., Gustavs L., Eggert A., Wolf W., Pröschold T. PLoS ONE. 2015. 10(6): e0127838. https://doi.org/10.1371/journal.pone.0127838 https://www.ncbi.nlm.nih.gov/pubmed/26080086 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469705
  24. Elbert W., Weber B., Burrows S., Steinkamp J., Büdel B., Andreae M.O., Pöschl U. Nat. Geosci. 2012. 5(7): 459–462. https://doi.org/10.1038/ngeo1486
  25. Ettl H. Xanthophyceae. 1. In: Süsswasserflora von Mitteleuropa. Bd 3. Stuttgart: Gustav Fischer, 1978.
  26. Ettl H., Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer, etc., 1995.
  27. Fučíková K., Flechtner V.R., Lewis L.A. Nova Hedw. 2012. 96: 15–59. https://doi.org/10.1127/0029-5035/2012/0067
  28. Glaser K., Baumann K., Leinweber P., Mikhailyuk T., Karsten U. Biogeosciences. 2018. 15(13): 4181–4192. https://doi.org/10.5194/bg-15-4181-2018
  29. Guiry M.D., Guiry G.M. AlgaeBase. Worldwide electronic publication, Nat. Univ. Ireland, Galway, 2018. http://www.algaebase.org
  30. Hauer T., Bohunická M., Johansen J.R., Mares J., Berrendero-Gomez E. J. Phycol. 2014. 50: 1089–1110. https://doi.org/10.1111/jpy.12241 https://www.ncbi.nlm.nih.gov/pubmed/26988790
  31. Henley W.J., Hironaka J.L., Guillou L., Buchheim M.A., Buchheim J.A., Fawley M.W., Fawley K.P. Phycologia. 2004. 43(6): 641–652. https://doi.org/10.2216/i0031-8884-43-6-641.1
  32. Hentschke G.S., Johansen J.R., Pietrasiak N., Fiore M.F., Rigonato J., Sant’Anna C.L., Komárek J. Phytotaxa. 2016. 245: 129–143. https://doi.org/10.11646/phytotaxa.245.2.4
  33. Hodač L., Hallmann C., Spitzer K., Elster J., Faßhauer F., Brinkmann N., Lepka D., Diwan V., Friedl T. FEMS Microbiol. Ecol. 2016. 92: fiw122. https://doi.org/10.1093/femsec/fiw122 https://www.ncbi.nlm.nih.gov/pubmed/27279416
  34. Hoffmann L. Bot. Rev. 1989. 55(2): 77–105. https://doi.org/10.1007/BF02858529
  35. Hoppert M., Reimer R., Kemmling A., Schröder A., Günzl B., Heinken T. Geomicrobiol. J. 2004. 21: 183–191. https://doi.org/10.1080/01490450490275433
  36. Katoh K., Standley D.M. Mol. Biol. Evol. 2013. 30: 772–780. https://doi.org/10.1093/molbev/mst010 https://www.ncbi.nlm.nih.gov/pubmed/23329690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603318
  37. Katoh K., Toh H. Brief. in Bioinform. 2008. 9: 286–298. https://doi.org/10.1093/bib/bbn013 https://www.ncbi.nlm.nih.gov/pubmed/18372315
  38. Kaufnerová V., Eliáš M. Nova Hedw. 2013. 97: 415–428. https://doi.org/10.1127/0029-5035/2013/0116
  39. Kawasaki Y., Nakada T., Tomita M. J. Phycol. 2015. 51: 1000–1016. https://doi.org/10.1111/jpy.12343 https://www.ncbi.nlm.nih.gov/pubmed/26986894
  40. Komárek J. In: Süsswasserflora von Mitteleuropa. Bd 19/3. Berlin, Heidelberg: Elsevier, 2013.
  41. Komárek J., Anagnostidis K. In: Süsswasserflora von Mitteleuropa. Bd 19/2. München: Elsevier Spectr., 2005.
  42. Komárek J., Fott B. In: Die Binnengewässer. Das Phytoplankton des Süsswassers. Bd 16/7. Stuttgart: Schweizer Bart Verlag-Bueh, 1983.
  43. Komárek J., Kaštovský J., Mareš J., Johansen J.R. Preslia. 2014. 86(4): 295–235.
  44. Kostikova L. E., Litvinova V. M., Skoryk L.V. In: Vegetation and bacterial population of the Dnieper and its reservoirs. Kiev: Naukova Dumka Press, 1989. Pp. 129–185. [Rus.]
  45. Kostikov I.Yu., Darienko T.M. Algologia. 1996. 6(3): 285–294.
  46. Kostikov I.Yu., Romanenko P.O., Demchenko E.M., Darienko T.M., Mikhailyuk T.I. Vodorosti gruntiv Ukrainy (istoriya ta metody doslidzhennya, systema, konspekt flory). Kyiv: Fitosotsiotsentr, 2001. 300 s. Kiev: Phytosociocenter, 2001. [Ukr.]
  47. Kovalenko O.V. Flora of algae of Ukraine. Vol. 1. Cyanoprokaryota. Issue 1. Order Chroococcales. Kyiv: Aristey, 2009. [Ukr.]
  48. Lange O.L., Kidron G.J., Büdel B., Meyer A., Kilian E., Abeliovich A. Functional Ecol. 1992. 6: 519–527. https://doi.org/10.2307/2390048
  49. Liu B., Liu X., Hu Z., Zhu H., Liu G. Phytotaxa. 2016. 260(1): 75. https://doi.org/10.11646/phytotaxa.260.1.8
  50. Lukešová A., Komárek J. Folia Geobot. & Phytotaxon, Praha. 1987. 22: 355–362.
  51. Marin B., Klingberg M., Melkonian M. Protist. 1998. 149: 265–276. https://doi.org/10.1016/S1434-4610(98)70033-1
  52. Marin B., Nowack E.C.M., Melkonian M. Protist. 2005. 156: 425–432. https://doi.org/10.1016/j.protis.2005.09.001 https://www.ncbi.nlm.nih.gov/pubmed/16310747
  53. Marin B., Palm A., Klingberg M., Melkonian M. Protist. 2003. 154: 99–145. https://doi.org/10.1078/143446103764928521 https://www.ncbi.nlm.nih.gov/pubmed/12812373
  54. Massjuk N.P. Algologia. 1998. 8(1): 87–92.
  55. Mikhailyuk T.I. Algologia. 2014. 24(3): 345–349.
  56. Mikhailyuk T.I., Kondratyuk S.Ya., Niporko S.O., Darienko T.M., Demchenko E.M., Voitsekhovich A.O. Lichens, mosses and terrestrial algae of granites of Ukraine. Kyiv: Alterpress, 2011. [Ukr.]
  57. Mikhailyuk T.I., Sluiman H., Massalski A., Mudimu O., Demchenko E., Kondratyuk S., Friedl T. J. Phycol. 2008. 44: 1586–1603. https://doi.org/10.1111/j.1529-8817.2008.00606.x https://www.ncbi.nlm.nih.gov/pubmed/27039871
  58. Mikhailyuk T.I. Int. J. Algae. 2013. 15(4): 311–330. https://doi.org/10.1615/InterJAlgae.v15.i4.20
  59. Mikhailyuk T.I., Vinogradova O.N, Glaser K., Karsten U. Int. J. Algae. 2016. 18(4): 301–320. https://doi.org/10.1615/InterJAlgae.v18.i4.10
  60. Miscoe L.H., Johansen J.R., Vaccarino M.A., Pietrasiak N., Sherwood A.R. Phycologica. 2016. 120: 75–152.
  61. Nakada T., Misawa K., Nozaki H. Mol. Phylogen. and Evol. 2008. 48: 281–291. https://doi.org/10.1016/j.ympev.2008.03.016 https://www.ncbi.nlm.nih.gov/pubmed/18430591
  62. Nienow J.A. Nova Hedw. 1996. 112: 537–552.
  63. Prikhodkova L.P. Blue-green algae of soils from Steppe zone of Ukraine. Kiev: Naukova Dumka Press, 1992. [Rus.]
  64. Prikhodkova L.P., Vinogradova O.M. Ukr. Bot. J. 1988. 45(5): 41–45.
  65. Pröschold T., Harris E.H., Coleman A.W. Genetics. 2005. 170: 1601–1610. https://doi.org/10.1534/genetics.105.044503 https://www.ncbi.nlm.nih.gov/pubmed/15956662 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449772
  66. Rindi F., Mikhailyuk T.I., Sluiman H.J., Friedl T., López-Bautista J.M. Mol. Phylog. and Evol. 2011. 58: 218–231. https://doi.org/10.1016/j.ympev.2010.11.030 https://www.ncbi.nlm.nih.gov/pubmed/21145975
  67. Ronquist F., Huelsenbeck J.P. Bioinformatics. 2003. 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 https://www.ncbi.nlm.nih.gov/pubmed/12912839
  68. Sadogurskaya S.A., Sadogursky S.E., Belich T.V. Trudy Nikit. Bot. Sada. 2006. 126: 190–208.
  69. Sciuto K., Moschin E., Moro I. Cryptogam. Algol. 2017. 38(4): 285–323. https://doi.org/10.7872/crya/v38.iss4.2017.285
  70. Singh P., Shaikh Z.M., Gaysina L.A., Suradkar A., Samanta U. Plant System. and Evol. 2016. 302(10): 1381–1394. https://doi.org/10.1007/s00606-016-1337-z
  71. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. Bacteriol. Rev. 1971. 35: 171–205. https://www.ncbi.nlm.nih.gov/pubmed/4998365 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC378380
  72. Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J. J. Phycol. 2013. 49: 1167–1180. https://doi.org/10.1111/jpy.12128 https://www.ncbi.nlm.nih.gov/pubmed/27007635
  73. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. Mol. Biol. and Evol. 2013. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 https://www.ncbi.nlm.nih.gov/pubmed/24132122 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312
  74. Varshney P., Mikulic P., Vonshak A., Beardall J., Wangikar P.P. Biores. Technol. 2015. 184: 363–372. https://doi.org/10.1016/j.biortech.2014.11.040 https://www.ncbi.nlm.nih.gov/pubmed/25443670
  75. Vinogradova O.M. Ukr. Bot. J. 1989. 46(1): 40–45.
  76. Vinogradova O.M. Blue-green algae of Mountain Crimea: Ph.D. (Biol.) Abstract. Kyiv, 1994. 371 p. [Ukr.]
  77. Vinogradova O.M., Darienko T.M. Biologia. 2008a. 63(6): 809–819. https://doi.org/10.2478/s11756-008-0103-2
  78. Vinogradova O.N., Darienko T.M. Int. J. Algae. 2008b. 10(2): 1–14. https://doi.org/10.1615/InterJAlgae.v10.i2.50
  79. Vinogradova O.N., Mikhailyuk T.I. Int. J. Algae. 2018. 20(3): 211–224. https://doi.org/10.1615/InterJAlgae.v20.i3.10
  80. Vinogradova O.N., Mikhailyuk T.I., Glaser K., Holzinger A., Karsten U. Ukr. Bot. J. 2017. 74(6): 509–520. https://doi.org/10.15407/ukrbotj74.06.509
  81. Voytsekhovich A.A. In: Actual problems of Botany and Ecology: Coll. articles. Vol. 2. Kiev: Phytosociocentr Press, 2008. Pp. 46–51. [Rus.]
  82. Voytsekhovich A.O., Mikhailyuk T.I., Darienko T.M. In: Collection articles dedicated to 95 years of Karadag Science Station. Sevastopol: ECOSI-Gidrophysica, 2009. Pp. 50–60. [Ukr.]
  83. Voytsekhovich A., Beck A. Symbiosis. 2016. 68(1–3): 9–24. https://doi.org/10.1007/s13199-015-0346-y
  84. Wilmotte A., Van der Auwera G., De Wachter R. FEBS Lett. 1993. 317: 96–100. https://doi.org/10.1016/0014-5793(93)81499-P