ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 4 of 7
Up
Algologia 2019, 29(4): 421–439
https://doi.org/10.15407/alg29.04.421
Physiology, Biochemistry, Biophysics

Biological activity of methanol extract from Nostoc sp. N42 and Fischerella sp. S29 isolated from aquatic and terrestrial ecosystems

Safavi M.1, Nowruzi B.2, Estalaki S.1, Shokri M.3
Abstract

Cyanobacteria are abundant producers of natural products well recognized for their bioactivity and utility in drug discovery and biotechnology applications. Novel secondary metabolites from aquatic and terrestrial cyanobacteria are affected by different environmental factors. Cyanobacteria strains from Kermanshah and Golestan province (Iran), where biodiversity is high, are mainly unexplored. Thus, in this research, biological activities (biochemical, antimicrobial, antioxidant, and anti-cancer analyses) of two strains of cyanobacteria, Nostoc sp. N42 and Fischerella sp. S29, were investigated. The amount of total phenols and alkaloids was analyzed using Folin–Ciocalteu assay. Cytotoxic activity was determined compared to liver and lung cancer cells using the MTT assay. The antioxidant activity was determined through the DPPH test and the ABTS assay. Moreover, antimicrobial activity was investigated against gram-positive and gram-negative bacteria using MIC and disk diffusion methods. Results showed that higher amounts of alkaloid (45/33 mg·g-1) and phenol were found in Nostoc sp. N42 and Fischerella sp. Results of cytotoxic activity showed that IC50 methanolic extract of Fischerella sp. S29 against liver cancer was 254.51 mg·mL-1 and against lung cancer was 171.74 mg·mL-1, while IC50 methanolic extract of strain Nostoc sp. N42 against liver cancer was 583.1 mg·mL-1 and against lung cancer was 792.17 mg·mL-1. Moreover, the maximum percentage of the inhibitory effect of antioxidant and antimicrobial activities were found in Fischerella sp. S29 Actually, this strain faces numerous predators in their habitat, and therefore the amount of antibacterial and antioxidant metabolites found in this strain is thought to play an important part in the defense mechanisms to survive. The results of this study prove that cyanobacteria from terrestrial environments have the ability to produce a large number of secondary metabolites to survive in competitive ecological niches.

Keywords: biological activities, anticancer, antimicrobial, antioxidant, cyanobacteria

Full text: PDF 866K

References
  1. Abolhasani M.H., Safavi M., Goodarzi M.T., Kassaee S.M., Azin M. 2018. Identification and anti-cancer activity in 2D and 3D cell culture evaluation of an Iranian isolated marine microalgae Picochlorum sp. RCC486. Daru. 26(2): 105–116. https://doi.org/10.1007/s40199-018-0213-5 https://www.ncbi.nlm.nih.gov/pubmed/30242672shttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279668
  2. Ahmed B.E., Badawi M.H., Mostafa S.S., Higazy A.M. 2018.Human anticancer and antidiabetic activities of the cyanobacterium Fischerella sp. BS1-EG isolated from Nile River, Egypt. Int. J. Curr. Microbiol. Appl. Sci. 7: 3473–3485. https://doi.org/10.20546/ijcmas.2018.701.409
  3. Arun N., Gupta S., Singh D.P. 2012.Antimicrobial and antioxidant property of commonly found microalgae Spirulina platensis, Nostoc muscorum and Chlorella pyrenoidosa against some pathogenic bacteria and fungi. Int. J. Pharm. Sci. and Res. 3(12): 4866–4875.
  4. Bajpai V., Shukla S., Kang S.M., Hwang S., Song X., Huh Y., Han Y.K. 2018. Developments of cyanobacteria for nano-marine drugs: relevance of nanoformulations in cancer therapies. Mar. Drugs. 16(6): 1–179. https://doi.org/10.3390/md16060179 https://www.ncbi.nlm.nih.gov/pubmed/29882898 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024944
  5. Cragg G.M., Newman D.J. 2013.Natural products: a continuing source of novel drug leads. Biochim. et Biophys. Acta. 1830(6): 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008 https://www.ncbi.nlm.nih.gov/pubmed/23428572 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672862
  6. El Semary N.A., Fouda M. 2015. Anticancer activity of Cyanothece sp. strain extracts from Egypt: First record. Asian Pac. J. Trop. Biomed. 5(12): 992–995. https://doi.org/10.1016/j.apjtb.2015.09.004
  7. El-Karim M.S.A. 2016. Chemical composition and antimicrobial activities of Cyanobacterial mats from hyper saline lakes, Northern Western Desert. Egypt. J. Appl. Sci. 16(1): 1–10. https://doi.org/10.3923/jas.2016.1.10
  8. Falaise C., François C., Travers M.A., Morga B., Haure J., Tremblay R., Turcotte F., Pasetto P., Gastineau R., Hardivillier Y., Leignel V. 2016. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar. Drugs. 14(9): 1–159. https://doi.org/10.3390/md14090159 https://www.ncbi.nlm.nih.gov/pubmed/27598176 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039530
  9. Gunasekera S.P., Imperial L., Garst C., Ratnayake R., Dang L.H., Paul V.J., Luesch H. 2016. Caldoramide, a modified pentapeptide from the marine cyanobacterium Caldora penicillata. J. Nat. Prod. 79(7): 1867–1871. https://doi.org/10.1021/acs.jnatprod.6b00203 https://www.ncbi.nlm.nih.gov/pubmed/27380142 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215049
  10. Guo M., Ding G.B., Guo S., Li Z., Zhao L., Li K., Guo X. 2015. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch. Food Funct. 6(9): 3035–3044. https://doi.org/10.1039/C5FO00471C https://www.ncbi.nlm.nih.gov/pubmed/26201366s
  11. Hassouani M., Sabour B., Belattmania Z., El Atouani S., Reani A., Ribeiro T., Castelo-Branco R., Ramos V., Preto M., Costa P.M., Urbatzka R. 2017. In vitro anticancer, antioxidant and antimicrobial potential of Lyngbya aestuarii (Cyanobacteria) from the Atlantic coast of Morocco. J. Mater. Environ. Sci. 8(S): 4923–4933.
  12. Hoa L.T.P., Quang D.N., Ha N.T.H., Tri N.H. 2011. Isolating and screening mangrove microalgae for anticancer activity. Res. J. Phytochem. 5: 156–162. https://doi.org/10.3923/rjphyto.2011.156.162
  13. Holland A., Kinnear S. 2013. Interpreting the possible ecological role (s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar. Drugs. 11(7): 2239–2258. https://doi.org/10.3390/md11072239 https://www.ncbi.nlm.nih.gov/pubmed/23807545 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736421
  14. Hosseini N., Akhavan A., Nowruzi B. 2019. Detection and relation of polyketide synthase (PKSs) genes with antimicrobial activity in terrestrial Cyanobacteria of Lavasan. Iran. J. Med. Microbiol. 12(6): 419–431. https://doi.org/10.30699/ijmm.12.6.419
  15. Jerez-Martel I., Garcia-Poza S., Rodriguez-Martel G., Rico M., Afonso-Olivares C., Gómez-Pinchetti J.L. 2017. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J. Food Quality. Vol. 2017, Article ID 2924508: 1–8. https://doi.org/10.1155/2017/2924508
  16. Kamble S.P., Gaikar R.B., Padalia R.B., Shinde K.D. 2013. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. J. Appl. Pharm. Sci. 3(8): 149–153.
  17. Komárek J. 2013. In: Süsswasserflora von Mitteleuropa, Bd 19/3, Heidelberg, Berlin: Spektrum Akad. Verlag. https://doi.org/10.1007/978-3-8274-2737-3
  18. Kultschar B., Llewellyn C. 2018. In: Secondary metabolites-sources and applications. Vol. 2, InTech: London, UK.
  19. Liu L., Jokela J., Wahlsten M., Nowruzi B., Permi P., Zhang Y.Z., Xhaard H., Fewer D.P., Sivonen K. 2014. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. J. Nat. Prod. 77(8): 1784–1790. https://doi.org/10.1021/np500106w https://www.ncbi.nlm.nih.gov/pubmed/25069058
  20. Mata T.M., Martins A.A., Caetano N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Reviews. 14: 217–232. https://doi.org/10.1016/j.rser.2009.07.020
  21. Miranda M.S., Cintra R.G., Barros S.B.D.M., Mancini-Filho J. 1998. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. and Biol. Res. 31(8): 1075–1079. https://doi.org/10.1590/S0100-879X1998000800007 https://www.ncbi.nlm.nih.gov/pubmed/9777014
  22. Nowruzi B., Ahmadimoghadam A. 2006. Two new records of heterocystus cyanobacteria (Nostocaceae) from paddy fields of Golestan Province. Iran. J. Bot. 11(2): 170–173.
  23. Nowruzi B., Blanco S. 2019a. In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochem. Lett. 29: 199–211. https://doi.org/10.1016/j.phytol.2018.12.011
  24. Nowruzi B., Khavari-Nejad R.A., Sivonen K., Kazemi B., Najafi F., Nejadsattari T. 2012. Identification and toxigenic potential of a Nostoc sp. Algae. 27(4): 303–313. https://doi.org/10.4490/algae.2012.27.4.303
  25. Nowruzi B., Khavari-Nejad R.A., Sivonen K., Kazemi B., Najafi F., Nejadsattari T. 2013a. Optimization of cultivation conditions to maximize extracellular investments of two Nostoc strains. Arch. Hydrobiol. Suppl. Algol. Stud. 142(1): 63–76. https://doi.org/10.1127/1864-1318/2013/0066
  26. Nowruzi B., Khavari-Nejad R.A., Sivonen K., Kazemi B., Najafi F., Nejadsattari T. 2013b. Identification and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Prog. Biol. Sci. 3(1): 79–85.
  27. Nowruzi B., Fahimi H., Ordodari N., Assareh R. 2017. Genetic analysis of polyketide synthase and peptide synthase genes of‎ cyanobacteria as a mining tool for new pharmaceutical compounds. JPHS. 5(2): 139–150.
  28. Nowruzi B., Haghighat S., Fahimi H., Mohammadi E. 2018a. Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. J. Pharm. Health. Serv. Res. 9(1): 5–12. https://doi.org/10.1111/jphs.12202
  29. Nowruzi B., Blanco S., Nejadsattari T. 2018b. Chemical and molecular evidences for the poisoning of a duck by Anatoxin-a, Nodularin and Cryptophycin at the coast of the Lake ShoorMast (Mazandaran Province, Iran). Int. J. Algae. 20(4): 359–376. https://doi.org/10.1615/InterJAlgae.v20.i4.30
  30. Nowruzi B., Wahlsten M., Jokela J. 2019b. A report on finding a new peptide aldehyde from Cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey's analysis. Iran. J. Biotech. 17(2): e1853. https://doi.org/10.21859/ijb.1853 https://www.ncbi.nlm.nih.gov/pubmed/31457050 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697839
  31. Nowruzi B., Sarvari G., Blanco S. 2019. In: The handbook of algal science, microbiology, technology, and medicine. Amsterdam: Elsevier (in press).
  32. Rajaniemi P., Hrouzek P., Kastovska K., Willame R., Rantala A., Hoffmann L., Komárek J., and Sivonen K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. System. Evol. and Microbiol. 55: 11–26. https://doi.org/10.1099/ijs.0.63276-0 https://www.ncbi.nlm.nih.gov/pubmed/15653847
  33. Rajeshwari K.R., Rajashekhar M. 2011. Biochemical composition of seven species of cyanobacteria isolated from different aquatic habitats of Western Ghats, Southern India, Braz. Arch. Biol. and Techn. 54(5): 849–857. https://doi.org/10.1590/S1516-89132011000500001
  34. Román R.B., Alvarez-Pez J.M., Fernández F.A., Grima E.M. 2002. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J. Biotechnol. 93(1): 73-85. https://doi.org/10.1016/S0168-1656(01)00385-6
  35. Seddek N.H., Fawzy M.A., El-Said W.A., Ahmed M.M. 2019. Evaluation of antimicrobial, antioxidant and cytotoxic activities and characterization of bioactive substances from freshwater blue-green algae. Global NEST J. 21(3): 328–336.
  36. Shanab S.M., Mostafa S.S., Shalaby E.A., Mahmoud G.I. 2012. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac. J. Tropic. Biomed. 2(8): 608–615. https://doi.org/10.1016/S2221-1691(12)60106-3
  37. Sharathchandra K., Rajashekhar M. 2013. Antioxidant activity in the four species of cyanobacteria isolated from a sulfur spring in the Western Ghats of Karnataka. Int. J. Pharm. Bio Sci. 4: 275–285.
  38. Shen S.G., Jia S.R., Wu Y.K., Yan R.R., Lin Y.H., Zhao D.X., Han P.P. 2018. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohydrate polymers. 198: 426–433. https://doi.org/10.1016/j.carbpol.2018.06.111 https://www.ncbi.nlm.nih.gov/pubmed/30093019
  39. Shokraei R., Fahimi H., Blanco S., Nowruzi B. 2019. Genomic fingerprinting using highly repetitive sequences to differentiate close cyanobacterial strains. Microbial. Bioactives. 2(1): 068–075. https://doi.org/10.25163/microbbioacts.21015A2624310119
  40. Sivonen K., Börner, T. 2008. In: The cyanobacteria: molecular biology, genomics and evolution. Poole, UK: Caister Acad. Press. Pp. 159–197.
  41. Victory K.J. 2009. Isolation and characterisation of antimicrobial compounds synthesised by Microcystis sp. Dr. Sci. (Biol.). Abstract. Univ. Adelaide. 937 pp.
  42. Wu S.C., Wang F.J., Pan C.L. 2010. The comparison of antioxidative properties of seaweed oligosaccharides fermented by two lactic acid bacteria. J. Marine Sci. and Technol. 18: 537–545.
  43. Zaid A.A., Hammad D.M., Sharaf E.M. 2015. Antioxidant and anticancer activity of Spirulina platensis water extracts. Int. J. Pharm. 11(7): 846–851. https://doi.org/10.3923/ijp.2015.846.851
  44. Zhang C., Naman C., Engene N., Gerwick W. 2017. Laucysteinamide A, a hybrid PKS/NRPS metabolite from a Saipan Cyanobacterium, cf. Caldora penicillata. Mar. Drugs. 15(4): 1–121. https://doi.org/10.3390/md15040121 https://www.ncbi.nlm.nih.gov/pubmed/28420100sPMCid:PMC5408267