ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 6 of 8
Up
Algologia 2020, 30(1): 62–73
https://doi.org/10.15407/alg30.01.062
Applied Algology

Application of immobilized microalgae for native wastewater treatment

Ameri M.1, Khavari-Nejad R.A.1, Soltani N.2, Najafi F.1, & Bagheri A.3
Abstract

Using bio-absorbents for treating industrial and domestic wastewater research have been recently increased. The dual application of microalgae for wastewater treatment and biomass production is a feasible way to reduce environmental problem. In this regard, the use of local microalgae in free and immobilized forms in native and diluted industrial wastewater was investigated. Immobilization was studied in alginate matrix, together with barium or calcium chloride cross link agents with other polymers and salts (chitosan, methyl cellulose, PVP, and CaCO3). Algae in both forms showed capability of absorption of nutrients and metal ions according to ICP and COD measurement. The results showed that using the immobilized form is superior due to the ease of harvest and possibility of alginate in metal ions’ chelation in a short time in comparison with free form.

Keywords: alginate, free and immobilized microalgae, phycoremediation, wastewater

Full text: PDF 1.38M

References
  1. Abdel-Raouf N., Al-Homaidan A., Ibraheem I. 2012. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19(3): 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005 https://www.ncbi.nlm.nih.gov/pubmed/24936135 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052567
  2. Al-Rub F.A., El-Naas M., Benyahia F., Ashour I. 2004. Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Proc. Biochem. 39(11): 1767–1773. https://doi.org/10.1016/j.procbio.2003.08.002
  3. Cai T., Park S.Y., Li.Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. and Sust. Energy Rev. 19: 360–369. https://doi.org/10.1016/j.rser.2012.11.030
  4. Chen J.P., Hong L., Wu S., Wang L. 2002. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir. 18(24): 9413–9421. https://doi.org/10.1021/la026060v
  5. da Costa A.C.A., Leite S.G.F. 1991. Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotech. Lett. 13(8): 559–562. https://doi.org/10.1007/BF01033409
  6. De-Bashan L.E., Bashan Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Biores. Techn. 101(6): 1611–1627. https://doi.org/10.1016/j.biortech.2009.09.043 https://www.ncbi.nlm.nih.gov/pubmed/19931451
  7. Dwivedi S. 2012. Bioremediation of heavy metal by algae: current and future perspective. J. Adv. Lab. Res. Biol. 3(3): 195–199.
  8. Gåserød O., Sannes A., Skjåk-Bræk G. 1999. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials. 20(8): 773–783. https://doi.org/10.1016/S0142-9612(98)00230-0
  9. Han X., Wong Y.S., Wong M.H., Tam N.F.Y. 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mat. 146(1-2): 65–72. https://doi.org/10.1016/j.jhazmat.2006.11.053 https://www.ncbi.nlm.nih.gov/pubmed/17197078
  10. Haug A. 1961. Affinity of some divalent metals to different types of alginates. Acta Chem. Scand. 15: 1794–1795. https://doi.org/10.3891/acta.chem.scand.15-1794
  11. Ibáñez J.P., Umetsu Y. 2002. Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy. 64(2): 89–99. https://doi.org/10.1016/S0304-386X(02)00012-9
  12. Kim S.K. 2011. Handbook of marine macroalgae: biotechnology and applied phycology. Chichester: John Wiley & Sons Ltd. Pp. 424–430. https://doi.org/10.1002/9781119977087
  13. Mahmoud M., Mohamed S.A. 2017. Calcium alginate as an eco-friendly supporting material for Baker's yeast strain in chromium bioremediation. HBRC J. 13(3): 245–254. https://doi.org/10.1016/j.hbrcj.2015.06.003
  14. Mehta S., Gaur J. 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25(3): 113–152. https://doi.org/10.1080/07388550500248571 https://www.ncbi.nlm.nih.gov/pubmed/16294830
  15. Mehta S.K., Gaur J.P. 2001. Removal of Ni and Cu from single and binary metalsolutions by free and immobilized Chlorella vulgaris. Europ. J. Protistol. 37(3): 261–271. https://doi.org/10.1078/0932-4739-00813
  16. Owlad M., Aroua M.K., Daud W.A.W., Baroutian S. 2009. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, and Soil Pollut. 200(1-4): 59–77. https://doi.org/10.1007/s11270-008-9893-7
  17. Pandey A., Bera D., Shukla A., Ray L. 2007. Studies on Cr(VI), Pb(II) and Cu(II) adsorption-desorption using calcium alginate as biopolymer. Chem. Spec. & Bioavailab. 19(1): 17–24. https://doi.org/10.3184/095422907X198031
  18. Papageorgiou S.K., Katsaros F.K., Kouvelos E.P., Nolan J.W., Le Deit H., Kanellopoulos N.K. 2006. Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mat. 137(3): 1765–1772. https://doi.org/10.1016/j.jhazmat.2006.05.017 https://www.ncbi.nlm.nih.gov/pubmed/16797834
  19. Patricia Blanes C.C., Adriana Cortadi, María Frascaroli, Martha Gattuso, Silvia García, Juan González, Masafumi Harada, Cristina Matulewicz, Yasuhiro Niwa, Héctor Prado, Luis Sala. 2011. Biosorption of trivalent chromium from aqueous solution by red seaweed Polysiphonia nigrescens. J. Water Res. and Protect. 3(11): 12. https://doi.org/10.4236/jwarp.2011.311093
  20. Pena-Castro J., Martınez-Jerónimo F., Esparza-Garcıa F., Canizares-Villanueva R. 2004. Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Biores. Technol. 94(2): 219–222. https://doi.org/10.1016/j.biortech.2003.12.005 https://www.ncbi.nlm.nih.gov/pubmed/15158517
  21. Petrovič A., Simonič M. 2016. Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. Int. J. Environ. Sci. and Technol. 13(7): 1761–1780. https://doi.org/10.1007/s13762-016-1015-2
  22. Rangsayatorn N., Pokethitiyook P., Upatham E., Lanza G. 2004. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30(1): 57–63. https://doi.org/10.1016/S0160-4120(03)00146-6
  23. Sivakumar D. 2015. Hexavalent chromium removal in a tannery industry wastewater using rice husk silica. Global J. Environ. Sci. and Manag. 1(1): 27–40.
  24. Yilleng M., Gimba C., Ndukwe I., Nwankwere E. 2013. Adsorption of hexavalent chromium from aqueous solution by granulated activated carbon from Canarium schweinfurthii seed shell. Adv. Appl. Sci. Res. 4(3): 89–94.