ISSN (print) 0868-8540, (online) 2413-5984
  • 6 of 8
Algologia 2020, 30(1): 62–73
Applied Algology

Application of immobilized microalgae for native wastewater treatment

Ameri M.1, Khavari-Nejad R.A.1, Soltani N.2, Najafi F.1, & Bagheri A.3

Using bio-absorbents for treating industrial and domestic wastewater research have been recently increased. The dual application of microalgae for wastewater treatment and biomass production is a feasible way to reduce environmental problem. In this regard, the use of local microalgae in free and immobilized forms in native and diluted industrial wastewater was investigated. Immobilization was studied in alginate matrix, together with barium or calcium chloride cross link agents with other polymers and salts (chitosan, methyl cellulose, PVP, and CaCO3). Algae in both forms showed capability of absorption of nutrients and metal ions according to ICP and COD measurement. The results showed that using the immobilized form is superior due to the ease of harvest and possibility of alginate in metal ions’ chelation in a short time in comparison with free form.

Keywords: alginate, free and immobilized microalgae, phycoremediation, wastewater

Full text: PDF (Rus) 1.38M

  1. Abdel-Raouf N., Al-Homaidan A., Ibraheem I. 2012. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19(3): 257–275.
  2. Al-Rub F.A., El-Naas M., Benyahia F., Ashour I. 2004. Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Proc. Biochem. 39(11): 1767–1773.
  3. Cai T., Park S.Y., Li.Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. and Sust. Energy Rev. 19: 360–369.
  4. Chen J.P., Hong L., Wu S., Wang L. 2002. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir. 18(24): 9413–9421.
  5. da Costa A.C.A., Leite S.G.F. 1991. Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotech. Lett. 13(8): 559–562.
  6. De-Bashan L.E., Bashan Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Biores. Techn. 101(6): 1611–1627.
  7. Dwivedi S. 2012. Bioremediation of heavy metal by algae: current and future perspective. J. Adv. Lab. Res. Biol. 3(3): 195–199.
  8. Gåserød O., Sannes A., Skjåk-Bræk G. 1999. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials. 20(8): 773–783.
  9. Han X., Wong Y.S., Wong M.H., Tam N.F.Y. 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mat. 146(1-2): 65–72.
  10. Haug A. 1961. Affinity of some divalent metals to different types of alginates. Acta Chem. Scand. 15: 1794–1795.
  11. Ibáñez J.P., Umetsu Y. 2002. Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy. 64(2): 89–99.
  12. Kim S.K. 2011. Handbook of marine macroalgae: biotechnology and applied phycology. Chichester: John Wiley & Sons Ltd. Pp. 424–430.
  13. Mahmoud M., Mohamed S.A. 2017. Calcium alginate as an eco-friendly supporting material for Baker's yeast strain in chromium bioremediation. HBRC J. 13(3): 245–254.
  14. Mehta S., Gaur J. 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25(3): 113–152.
  15. Mehta S.K., Gaur J.P. 2001. Removal of Ni and Cu from single and binary metalsolutions by free and immobilized Chlorella vulgaris. Europ. J. Protistol. 37(3): 261–271.
  16. Owlad M., Aroua M.K., Daud W.A.W., Baroutian S. 2009. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, and Soil Pollut. 200(1-4): 59–77.
  17. Pandey A., Bera D., Shukla A., Ray L. 2007. Studies on Cr(VI), Pb(II) and Cu(II) adsorption-desorption using calcium alginate as biopolymer. Chem. Spec. & Bioavailab. 19(1): 17–24.
  18. Papageorgiou S.K., Katsaros F.K., Kouvelos E.P., Nolan J.W., Le Deit H., Kanellopoulos N.K. 2006. Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mat. 137(3): 1765–1772.
  19. Patricia Blanes C.C., Adriana Cortadi, María Frascaroli, Martha Gattuso, Silvia García, Juan González, Masafumi Harada, Cristina Matulewicz, Yasuhiro Niwa, Héctor Prado, Luis Sala. 2011. Biosorption of trivalent chromium from aqueous solution by red seaweed Polysiphonia nigrescens. J. Water Res. and Protect. 3(11): 12.
  20. Pena-Castro J., Martınez-Jerónimo F., Esparza-Garcıa F., Canizares-Villanueva R. 2004. Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Biores. Technol. 94(2): 219–222.
  21. Petrovič A., Simonič M. 2016. Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. Int. J. Environ. Sci. and Technol. 13(7): 1761–1780.
  22. Rangsayatorn N., Pokethitiyook P., Upatham E., Lanza G. 2004. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30(1): 57–63.
  23. Sivakumar D. 2015. Hexavalent chromium removal in a tannery industry wastewater using rice husk silica. Global J. Environ. Sci. and Manag. 1(1): 27–40.
  24. Yilleng M., Gimba C., Ndukwe I., Nwankwere E. 2013. Adsorption of hexavalent chromium from aqueous solution by granulated activated carbon from Canarium schweinfurthii seed shell. Adv. Appl. Sci. Res. 4(3): 89–94.