ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 9
Up
Algologia 2020, 30(2): 113–135
https://doi.org/10.15407/alg30.02.113
Morphology, Anatomy, Cytology

Morphological and molecular characterisation of the representative of Brasilonema (Scytonemataceae, Cyanoprokaryota) from the tropical greenhouse in Kiev (Ukraine)

Romanenko P.A.1, Vinogradova O.N.2, Romanenko E.A.2, Mikhailyuk T.I.2, Babenko L.M.2, Ivannikov R.3, Scherbak N.N.4
Abstract

The paper presents morphological and molecular characterization of the representative of the pantropic genus Brasilonema Fiore et al., first found in the greenhouse in Europe. The genus described in 2007 using an integrated approach is morphologically close to Scytonema Agardh, differing in the filaments forming ascending bundles, rarely occurring false branching and the color of cells. To date, 12 species of Brasilonema have been described; all of them occur subaerophytically in tropical and subtropical regions with a humid climate. For several years in the greenhouse of the N.N. Grishko National Botanical Garden of the NAS of Ukraine, we observed abundant blackish mats with a fleecy surface, formed by falsely branching filaments of heterocytous cyanobacteria, lilac, pale purple or gray in color. Cyanobacteria densely covered the vegetative organs of various tropical epiphytic plants from the Orchidaceae and Bromeliaceae families; sometimes they inhabited concrete and wooden substrates in the greenhouse. The morphological features of the found cyanobacteria were studied both in natural material (samples from the greenhouse) and culture. For cultivation, liquid and agarized N-free BG11 medium was used. The specimens from the mats and the cultures had some differences in thalli habitus, coloration and arrangement of filaments, frequency of false branching, trichome appearance, dimensional limits, etc. A comparative analysis of the original data with descriptions of the known Brasilonema species showed that the Kiev population morphologically and ecologically coincides with several species, of which it is closest to B. octagenarum Aguiar et al. Phylogenetic analysis of the nucleotide sequence of the gene encoding 16S rRNA confirmed affiliation of the original strains to Brasilonema. Analysis of the nucleotide sequence of the 16S-23S ITS region, as well as the secondary structure of its most informative helices, showed the closest proximity of the Kiev material to B. octagenarum, which in turn is probably a complex of species whose taxonomic separation is possible in the future. Presumably, cyanobacteria could get into the Kiev greenhouse with tropical plants brought by Ukrainian botanists from an expedition to Brazil in 1986.

Keywords: subaerophytic cyanobacteria, Brasilonema octagenarum, morphological variability, SEM, molecular phylogeny, 16S rRNA, 16S-23S ITS secondary structure

Full text: PDF (Rus) 3.37M

References
  1. Aguiar M., Fiore F.M., Franco M.W., Ventrella M.C., Lorenzi A.S., Vanetti C.A., Alfenas A.C. 2008. A novel epiphytic cyanobacterial species from the genus Brasilonema causing damage to Eucalyptus leaves. J. Phycol. 44: 1322–1334. https://doi.org/10.1111/j.1529-8817.2008.00584.x https://www.ncbi.nlm.nih.gov/pubmed/27041729
  2. Akaike H. 1974. A new look at the statistical model identification. Automatic Control, IEEE Transactions on Automatic Control. 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705
  3. Bischoff H.W., Bold H.C. 1963. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publ. 6318: 1–95.
  4. Becerra-Absalón I., Rodarte B., Osorio K., Alba-Lois L., Sega-Kischinevzky C., Montejano G. 2013. A new species of Brasilonema (Scytonemataceae, Cyanoprokaryota) from Tolantongo, Hidalgo, Central Mexico. Fottea, Olomouc. 13(1): 25–38. https://doi.org/10.5507/fot.2013.003
  5. Bohunická M., Mareš J., Hauer T., Komárek J., Štenclová L., Zima J., Becerra-Absalón I., Johansen J.R. 2016. Biogeography of the recently described pantropical genus Brasilonema Fiore et al. (Nostocales, Cyanobacteria). In: Rott E. (ed.): 20th Cyanophyte / Cyanobacteria Research Symposium. Program & Abstracts. Institute of Botany, University of Innsbruck. Austria. 20 p.
  6. Bourrelly P., Manguin E. 1952. Algues d'eau douce de la Guadeloupe et dépendances. Centre National de la Recherche Scientifique, Société d'Edition d'Enseignement Supérieur. Paris. 281 p.
  7. Byun Y., Han K. 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics. 25(11): 1435–1437. https://doi.org/10.1093/bioinformatics/btp252 https://www.ncbi.nlm.nih.gov/pubmed/19369500
  8. Fiore M.F., Sant'Anna C.L., Azevedo M.T.P., Komárek J., Kaštovský J., Sulek J., Lorenzi A.S. 2007. The cyanobacterial genus Brasilonema, gen. nov., a molecular and phenotype evaluation. J. Phycol. 43:789–798. https://doi.org/10.1111/j.1529-8817.2007.00376.x
  9. González-Resendiz L., León-Tejera H.P., Gold-Morgan M. 2015. Morphological diversity of benthic Nostocales (Cyanoprokaryota/Cyanobacteria) from the tropical rocky shores of Huatulco region, Oaxaca, México. Phytotaxa. 219(3): 221–232. https://doi.org/10.11646/phytotaxa.219.3.2
  10. Guiry M.D., Guiry G.M. 2019. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org
  11. Katoh K., Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics. 9: 286–298. https://doi.org/10.1093/bib/bbn013 https://www.ncbi.nlm.nih.gov/pubmed/18372315
  12. Kim M., Oh H.S., Park S.Ch., Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. and Evol. Microbiol. 64: 346–351. https://doi.org/10.1099/ijs.0.059774-0 https://www.ncbi.nlm.nih.gov/pubmed/24505072
  13. Komárek J. 2013. Cyanoprokaryota. 3rd part: Heterocytous Genera. In: Süsswasserflora von Mitteleuropa. Bd 19/3. Berlin, Heidelberg: Springer Spectrum. Pp. 1–1130. https://doi.org/10.1007/978-3-8274-2737-3_1
  14. Marin B., Nowack E.C.M., Melkonian M. 2005. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 156: 425–432. https://doi.org/10.1016/j.protis.2005.09.001 https://www.ncbi.nlm.nih.gov/pubmed/16310747
  15. Mendoza Carbajal L.H. 2018. New insights in the morphology and phylogeny of heterocytous cyanobacteria from Peru, including the description of new taxa. Master's Thesis. České Budějovice. 108 p. https:/theses.cz>ivekg7 > MasterThesis_Final
  16. Miscoe L.H., Johansen J.R., Vaccarino M.A., Pietrasiak N., Sherwood A.R. 2016. The diatom flora and cyanobacteria from caves on Kauai, Hawaii. II. Novel cyanobacteria from caves on Kauai, Hawaii. Bibliotheca Phycologica. 123: 75–152.
  17. Rodarte B., Becerra-Absalón I., Montejano G.A., Osorio-Santos K., Alba-Lois L., León-Tejera H., Segal-Kischinevzky C. 2014. Morphological and molecular characterization of Brasilonema roberti-lamii (Cyanophyceae, Nostocales, Scytonemataceae), from Central Mexico. Phytotaxa. 164(4): 255–264. http://dx.doi.org/10.11646/phytotaxa.164.4.4
  18. Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 https://www.ncbi.nlm.nih.gov/pubmed/12912839
  19. Sant'Anna C.L., Azevedo, M.T.P., Fiore M.F., Lorenzi A.S., Kaštovský J., Komárek J. 2011. Subgeneric diversity of Brasilonema (Cyanobacteria, Scytonemataceae). Rev. Brasil. Bot. 34(1): 51–62. http://dx.doi.org/10.1590/S0100-84042011000100006
  20. Stackebrandt E., Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today. 8: 6–9.
  21. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Revs. 35: 171–205. https://doi.org/10.1128/MMBR.35.2.171-205.1971 https://www.ncbi.nlm.nih.gov/pubmed/4998365 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC378380
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 https://www.ncbi.nlm.nih.gov/pubmed/24132122 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312
  23. Vaccarino M.A., Johansen J.R. 2012. Brasilonema angustatum sp. nov. (Nostocales), a new filamentous cyanobacterial species from the Hawaiian Islands. J. Phycol. 48: 1178–1186. https://doi.org/10.1111/j.1529-8817.2012.01203.x https://www.ncbi.nlm.nih.gov/pubmed/27011277
  24. Villaneuva C.D., Hašler P., Dvořák P., Poulíčková A., Casamatta D.A. 2018. Brasilonema lichenoides sp. nov. and Chroococcidiopsis lichenoides sp. nov. (Cyanobacteria): two novel cyanobacterial constituents isolated from a tripartite lichen of headstones. J. Phycol. 54: 224–233. https://doi.org/10.1111/jpy.12621 https://doi.org/10.1111/jpy.12621 https://www.ncbi.nlm.nih.gov/pubmed/29377146
  25. Villanueva C.D., Garvey A.D., Hašler P., Dvořák P., Poulíčková A., Norwich A.R., Casamatta D.A. 2019. Descriptions of Brasilonema geniculatum and Calothrix dumus (Nostocales, Cyanobacteria): two new taxa isolated from cemetery tombstones. Phytotaxa. 387(1): 1–20. https://doi.org/10.11646/phytotaxa.387.1.1
  26. Wilmotte A., Van der Auwera G., De Wachter R. 1993. Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF ('Mastigocladus laminosus HTF') strain PCC75 18, and phylogenetic analysis. FEBS Letters. 317: 96–100. https://doi.org/10.1016/0014-5793(93)81499-p
  27. Zammit G., Billi D., Shubert E., Kaštovský J., Albertano P. 2011. The biodiversity of subaerophytic phototrophic biofilms from Maltese hypogea. Fottea 11(1): 187–201. https://fottea.czechphycology.cz/pdfs/fot/2011/01/18.pdf https://doi.org/10.5507/fot.2011.018