ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 4 of 9
Up
Algologia 2020, 30(2): 160–169
https://doi.org/10.15407/alg30.02.160
Physiology, Biochemistry, Biophysics

Biochemical composition of cyanobacterium Calothrix marchica and perspectives its using in biotechnology

Trofim A., Bulimaga V., Bulimaga M.B.
Abstract

In recent years, cyanobacteria were found to be important sources of previously known bioactive substances, as well as newly discovered secondary metabolites. In this research, one of the strains – Calothrix marchica Lemmermann CNMN-CB-18 — was isolated in pure culture and characterized. This strain grows in the soil of the Cogâlnic River meadow, Cimislia, Moldova. The two step cultivation of C. marchica with switching of the illumination from 1500 to 2500 lx on the 7th day lead to a higher carbohydrate content (up to 40.5%) on BG11 medium when compared to its growth in different lighting regimes (36.5–37.5%). The productivity of the strain showed similar tendencies: it reached values of up to 1.314 g/L for the two-step cultivation, whereas the 1500 and 2500 lx continuous illumination displayed lower values — 0.714 and 0.87 g/L, respectively. The same trends were attested for growth on Drew medium, however its poorer content of minerals lead to lower yields as compared to BG11. The biochemical analysis of C. marchica grown on Drew medium demonstrates rich amounts of lipids — 33.7%, and carbohydrates — 32.9%, followed by proteins with 14.7%. Due to its ability to adjust to various growth conditions under controlled cultivation for the accumulation of high amounts of carbohydrates, this strain is a valuable source of bioactive substances for use in biotechnology in order to be applied in diverse fields such as: cosmetics, pharmaceuticals, agriculture, etc.

Keywords: Calothrix, cyanobacteria, biochemical analysis, lipids, carbohydrates, proteins

Full text: PDF (Rus) 421K

References
  1. Abbasi B., Shokravi Sh., Golsefidi M.Ah., Sateiee A., Kiaei E. 2019. Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems and functional groups of the native cyanobacterium Calothrix sp. ISC 65. Аlgologia. 29(1): 40–58. https://doi.org/10.15407/alg29.01.040
  2. Abed R., Dobretsov S., Sudesh K. 2009. Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106: 1-12. https://doi.org/10.1111/j.1365-2672.2008.03918.x https://www.ncbi.nlm.nih.gov/pubmed/19191979
  3. Algae: Referance book. 1989. Eds S.P. Wasser. Kiev: Naukova Dumka. 608 p. [Rus.]
  4. Bulimaga V., Zosim L., Trofim A., Pisova M. 2018. Procedures of obtaining of exopolysaccharides produced by cyanobacteria Spirulina platensis and Nostoc linckia. Analele Univ. din Oradea, Fascicula Biol. 25: 7–13.
  5. Filipovich I., Egorova T., Sevastianova L. 1975. Workshop on General Biochemistry. Moscow: Prosveshcheniye. 318 p. [Rus.]
  6. Gutierrez M., Suyama T., Engene N., Wingerd J., Matainaho L., Gerwick W. 2008. Apratoxin D, a potent cytotoxic cyclodepsipeptide from papua new guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J. Nat. Prod. 71(6): 1099–1103. https://doi.org/10.1021/np800121a https://www.ncbi.nlm.nih.gov/pubmed/18444683
  7. Guiry M.D., Guiry G.M. 2020. AlgaeBase. World-wide electronic publication. Nat. Univ. Ireland, Galway.
  8. Höckelmann C., Becher P.G., von Reuß S.H., Jüttner F. 2009. Sesquiterpenes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates. Z. Naturforsch. 64(1-2): 49–55. https://doi.org/10.1515/znc-2009-1-209 https://www.ncbi.nlm.nih.gov/pubmed/19323266
  9. Khalifa K.S., Hamouda R.A., Hamza H.A. 2016. Antitumor activity of silver nanoparticles biosynthesized by micro algae. J. Chem. and Pharm. Res. 8(3): 1–6.
  10. Lee M.C., Chen Y.C., Peng T.C. 2012. Two-stage culture method for optimized polysaccharide production in Spirulina platensis. J. Sci. Food and Agricult. 92(7): 1562–1569. https://doi.org/10.1002/jsfa.4743 https://www.ncbi.nlm.nih.gov/pubmed/22222671
  11. Malathi T., Ramesh Babu M., Mounika T., Digamber Rao B. 2015. Antimicrobial activity of blue-green algae Calothrix braunii (A.Br.) Bornet et Flahault. Int. J. Innovat. Sci., Engineer. and Technol. 2(8): 104–112.
  12. Park J., Jeong H.J., Yoon E.Y., Moon S.J. 2016. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method. Algae. 31(4): 391–401. https://doi.org/10.4490/algae.2016.31.12.7
  13. Pattanaik B., Lindberg P. 2015. Terpenoids and their biosynthesis in cyanobacteria. Life. 5(1): 269293. https://doi.org/10.3390/life5010269 https://www.ncbi.nlm.nih.gov/pubmed/25615610 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390852
  14. Paul A., Rout J. 2017. Biochemical evaluation of some cyanobacterial strains isolated from the lime sludge waste of a Paper Mill in Southern Assam (India). Phykos. 47(1): 8–15.
  15. Ruangsomboon S., Chidthaisong A., Bunnag B., Inthorn D., Harvey N.W. 2007. Lead (Pb2+) adsorption characteristics and sugar composition of capsular polysaccharides of cyanobacterium Calothrix marchica. Songklan. J. Sci. Technol. 29: 529–541.
  16. Şalaru V., Melnic V. 2012. Particularităţile structurii taxonomice şi ale ecobiomorfelor algelor edafice din vegetaţia de stepă după o perioadă de păstrare îndelungată în stare de anhidrobioză. Stud. Univ. Mold. 1(51): 5–8.
  17. Sharma V., Manchanda H. 2018. Effect of salinity and lipid content of cynobacterium Calothrix marchica. J. Biol. Chem. Res. 35(2): 1009–1014.
  18. Sundaramanickam A., Palanivel S., Shekhar S., Kumaresan S., Balasubramanian T. 2015. In vitro evaluation of antimicrobial activity of some selected cyanobacterial extracts against human pathogens. Int. J. Adv. Pharm., Biol. and Chem. 4(1): 36–43.
  19. Tiwari O.N., Singh B.V., Mishra U., Singh A.K., Dhar D.W., Singh P.K. 2005. Distribution and physiological characterization of cyanobacteria isolated from arid zones of Rajasthan. Trop. Ecol. 46(2): 165–171.
  20. Tiwari O.N., Indrama T., Singh K.O., Singh O.A., Oinam G., Koijam L., Subhalaxmi A., Thadoi A., IndiraW., Silvia C., Khangembam R., Shamjetshabam M., Premi P., Bidyababy T., Sarabati K., Sharma G.D. 2015. Enumeration, pigment analysis and nitrogenase activity of cyanobacteria isolated from unexplored rice fields of Manipur, India falling under Indo-Burma biodiversity hotspots. Int. J. Curr. Microbiol. and Appl. Sci. 4(6): 666-680.
  21. Trofim A., Şalaru V., Zosim L. 2016. In: 3rd International Scientific Conference on Microbial Biotechnology (Chisinau, 12-13 Oct., 2016). Chisinau. Pp. 159–160.
  22. Tuo S.-H., Lee Chen Y.-L., Chen H.-Y., Chen T.-Y. 2017. Free-living heterocystous cyanobacteria in the tropical marginal seas of the western North Pacific. J. Plankton Res. 39(3): 404–422. https://doi.org/10.1093/plankt/fbx023
  23. Vijayakumar S., Menakha M. 2015. Pharmaceutical applications of cyanobacteria − A review. J. Acute Med. 5(1): 15–23. https://doi.org/10.1016/j.jacme.2015.02.004
  24. Vinogradova O.M. Wasser S.P. Nevo E. 2000. In: Biodiversity of cyanoprocaryotes, algae and fungi of Israel. Cyanoprocaryotes and algae of continental Israel. Ruggell: ARA Gantner Verlag K.-G. Pp. 132–141.
  25. Zarei Darki B. 2010. Cyanoprokaryota of different types of water bodies of Iran. Algologia. 20(4): 482–491. http://algologia.co.ua/pdf/20/4/alg-2010-20-4-482.pdf