ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 2 of 7
Up
Algologia 2020, 30(3): 250–260
https://doi.org/10.15407/alg30.03.250
Physiology, Biochemistry, Biophysics

The importance of harvesting time on the screening of Chlamydomonas spp. extracts for antibacterial activity

Gerusa N.A. Senhorinho1, Carita Lannér2, John A. Scott1
Abstract

Photosynthetic green microalgae are being investigated for their ability to produce metabolites with antibacterial activity. During microalgal screening for antibacterial activity, researchers usually choose a relatively random harvesting day in either the exponential or early stationary phase. However, little is known about whether microalgae produce metabolites exhibiting antibacterial activity throughout their growth phase, or at what point they produce the maximum amount. For mass screening for activity, harvesting time is a key factor and knowing if it can be conducted during the exponential phase or it has to wait until the onset of the stationary phase is essential knowledge. In this study, extracts from five Chlamydomonas spp., collected from different water bodies and previously shown to have inhibitory activity against Staphylococcus aureus were investigated for antibacterial activity through their exponential growth phase until the onset of the stationary phase. The results demonstrated that as extracts exhibited antibacterial activity over the entire growth, they could be sampled for an initial screening early in the exponential phase, but if a high level of activity is required, it is suggested harvesting the biomass towards the end of the exponential phase.

Keywords: photosynthetic green microalgae, antibiotic activity, growth curve

Full text: PDF 390K

References
  1. Abd El-Baky H., El-Baroty G.S. 2013. The potential use of microalgal carotenoids as dietary supplements and natural preservative ingredients. J. Aquat. Food Prod. Technol. 22(4): 392–406. https://doi.org/10.1080/10498850.2011.654381
  2. Al-Wathnani H., Ara I., Tahmaz R.R., Al-Dayel T.H., Bakir M.A. 2012. Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. J. Med. Plants Res. 6(8): 3425–3433. https://doi.org/10.5897/JMPR11.1746
  3. Aremu A.O., Masondo N.A., Stirk W.A., Ordog V., Staden J.V. 2014. Influence of culture age on the phytochemical content and pharmacological activities of five Scenedesmus strains. J App. Phycol. 26(1): 407–415. https://doi.org/10.1007/s10811-013-0144-y
  4. Balouiri M., Sadiki M., Ibnsouda S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005 https://www.ncbi.nlm.nih.gov/pubmed/29403965 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762448
  5. Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., Pinto E. 2007. Metabolites from algae with economical impact. Com. Biochem. Physiol. 146(12): 60-78. https://doi.org/10.1016/j.cbpc.2006.05.007 https://www.ncbi.nlm.nih.gov/pubmed/16901759
  6. Cooper S., Battat A., Marsot P., Sylvestre M. 1983. Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Can. J. Microbiol. 29(3): 338–341. https://doi.org/10.1139/m83-056
  7. Corona E., Fernandez-Acero J., Bartual A. 2017. Screening study for antibacterial activity from marine and freshwater microalgae. Int. J. Pharm. Bio. Sci. 8(1): 189–194. https://doi.org/10.22376/ijpbs.2017.8.1.p189-194
  8. Coutteau P. 1996. In: Manual on the production and use of live food for aquaculture. Rome, Lazio: Food and Agricult. Org. United Nat. Publ. Pp. 7–47.
  9. Debro L.H., Ward H.B. 1979. Antibacterial activity of freshwater green algae. Planta Med. 36(4): 375–378. https://doi.org/10.1055/s-0028-1097284 https://www.ncbi.nlm.nih.gov/pubmed/493402
  10. Hernandez-Carlos B., Gamboa-Angulo M.M. 2011. Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochem. Rev. 10(2): 261–286. https://doi.org/10.1007/s11101-010-9192-y
  11. Koller M., Muhr A., Braunegg G. 2014. Microalgae as versatile cellular factories for valued products. Algal Res. 6A: 52–63. https://doi.org/10.1016/j.algal.2014.09.002
  12. Lauritano C., Andersen J.H., Hansen E., Albrigtsen M., Escalera L., Esposito F., Helland K., Hanssen K.O., Romano G., Ianora A. 2016. Bioactivity Screening of Microalgae for antioxidant, anti inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci. 3: 68. https://doi.org/10.3389/fmars.2016.00068
  13. Leflaive J.P., Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwat. Biol. 52(2): 199–214. https://doi.org/10.1111/j.1365-2427.2006.01689.x
  14. Li A., Zhang L., Zhao Z., Ma S., Wang M, Liu P. 2016. Prescreening, identification and harvesting of microalgae with antibacterial activity. Biologia. 71(10): 1111–1118. https://doi.org/10.1515/biolog-2016-0143
  15. Malik V.S. 1980. Microbial secondary metabolism. Trends Biochem. Sci. 5(3): 68–72. https://doi.org/10.1016/0968-0004(80)90071-7
  16. Michalak I., Chojnacka K. 2015. Algae as production systems of bioactive compounds. Eng. Life Sci. 15: 160–176. https://doi.org/10.1002/elsc.201400191
  17. Mudimu O., Rybalka N., Bauersachs T., Born J., Friedl T., Schulz R. 2014. Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites. 4(2): 373–393. https://doi.org/10.3390/metabo4020373 https://www.ncbi.nlm.nih.gov/pubmed/24957031 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101511
  18. Najdenski H.M., Gigova L.G., Iliev I.I. Pilarski P.S., Lukavsky J., Tsvetkova I.V., Ninova M.S., Kussovski V.K., Ruiz-Domínguez M.C., Garbayo I., Castaño M.Á., Vílchez C., Vega J.M. 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Technol. 48(7): 1533–1540. https://doi.org/10.1111/ijfs.12122
  19. Navarro F., Forján E., Vázquez M., Toimil A., Montero Z. 2016. Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycol. Res. 65(1): 38–43. https://doi.org/10.1111/pre.12158
  20. Noaman N.H., Fattah A., Khaleafa M., Zaky S.H. 2004. Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiol. Res. 159(4): 395–402. https://doi.org/10.1016/j.micres.2004.09.001 https://www.ncbi.nlm.nih.gov/pubmed/15646385
  21. Ördög V., Stirk W. A., Lenobel R., Bancirová M., Strnad M., van Staden J., Szigeti J., Németh L. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Phycol. 16(4): 309–314. https://doi.org/10.1023/B:JAPH.0000047789.34883.aa
  22. Pina-Perez M.C., Rivas A., Martinez A., Rodrigo D. 2017. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem. 235: 34–44. https://doi.org/10.1016/j.foodchem.2017.05.033 https://www.ncbi.nlm.nih.gov/pubmed/28554644 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131516
  23. Ploutno A., Carmeli S. 2000. Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacteriam Nostoc sp. J. Nat. Prod. 63(11): 1524–1526. https://doi.org/10.1021/np0002334 https://www.ncbi.nlm.nih.gov/pubmed/11087597
  24. Ruffell S., Muller K.M., McConkey B.J. 2016. Comparative assessment of microalgal fatty acids as topical antibiotics. J. App. Phycol. 28(3): 1695–1704. https://doi.org/10.1007/s10811-015-0692-4
  25. Sasso S., Pohnert G., Lohr M., Mittag M., Hertweck C. 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol. Rev. 36(4): 761–785. https://doi.org/10.1111/j.1574-6976.2011.00304.x https://www.ncbi.nlm.nih.gov/pubmed/22091538
  26. Senhorinho G.N.A., Laamanen C.A., Scott J.A. 2018. Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia. 57(4): 432–439. https://doi.org/10.2216/17-114.1
  27. Senhorinho G.N.A., Ross G.M., Scott J.A. 2015. Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics. Phycologia. 54(3): 271–282. https://doi.org/10.2216/14-092.1
  28. Skjånes K., Rebours C., Lindblad P. 2012. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol. 33(2): 172–215. https://doi.org/10.3109/07388551.2012.681625 https://www.ncbi.nlm.nih.gov/pubmed/22765907 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665214
  29. Skulberg O.M. 2000. Microalgae as a source of bioactive molecules - experience from cyanophyte research. J. App. Phycol. 12(3): 1–8.
  30. Trick C.G., Andersen R.J., Harrison P.J. 1984. Environmental factors influencing the production of an antibacterial metabolite from a marine dinoflagellate, Prorocentrum minimum. Can. J. Fish. Aquat. Sci. 41(3): 423–432. https://doi.org/10.1139/f84-050