First report on cyanobacterial flora from Masirah Island, Sultanate of Oman

Authors

Shamina M.*
Cyanobacterial Diversity Division, Department of Botany, University of Calicut, Kerala, India

Section:

Flora and Geography

Issue:

Vol. 30 No. 4 (2020)

Pages:

440–451

DOI:

https://doi.org/10.15407/alg30.04.440

Abstract

Cyanobacteria are organisms which play a vital role in various molecular and biotechnological aspects in food industry, agriculture, pharmaceuticals, neutraceuticals, biofuel production, etc., it is necessary to understand its adaptability to various environmental conditions. Furthermore it is equally important to discover new cyanobacterial taxa and with it occasional changes in taxonomic classification, thus the author set out to study cyanobacteria in extreme climatic conditions of desert, where temperatures are mostly above 45 oC. The taxonomic composition of cyanobacteria of Masirah Island, Sultanate of Oman, was studied for the first time. The studied samples were collected during the period of 2017–2019. The ten samples belonged to two orders: Oscillatoriales Schaffner and Synechococcales L.Hoffmann, Komárek & J.Kastovsky. All of them were filamentous non-heterocyst forms. Three species belonged to the genus Leptolyngbya Anagn. & Komárek, the genera Oscillatoria Vaucher ex Gomont and Lyngbya C.Agardh ex Gomont were represented by two species each, while the genera Pseudanabena Lauterborn, Planktolyngbya Anagn. & Komárek and Geitlerinema (Anagn. & Komárek) Anagn. were one species.

Keywords:

Cyanobacteria, filamentous, new species, Arabian Sea, Masirah Island, Oman

References

Anagnostidis K. 2001. Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia Praha. 73: 359–375.

Anagnostidis K., Komárek J. 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol. Suppl. 80: 327–472.

Azevedo M.T.P., Sant'Anna C.L., Senna P.A.C., Komárek J., Komárková J. 2003. Contribution to the microflora of chroococcalean cyanoprokaryotes from Sa˜o Paulo State, Southeast Brazil. Hoehnea. 30: 285–295.

Billi D. 2008. Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles. 13: 49–57. https://doi.org/10.1007/s00792-008-0196-0 https://www.ncbi.nlm.nih.gov/pubmed/18931823

Broady P.A., Garrick R., Anderson G.M. 1996. Diversity, distribution and dispersal of Antartic terrestrial algae. Biodivers. Conserv. 5: 1307–1335. https://doi.org/10.1007/BF00051981

Caiola M.G., Billi D., Friedmann E.I. 1996. Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur. J. Phycol. 31: 97–105. https://doi.org/10.1080/09670269600651251a

Chauhan K.L., Gupta A.B. 1984. Cytokinin like substance in blue-green algae. Curr. Sci. 53: 324–325.

Chen L., Yang Y., Deng S., Xu Y., Wang G., Liu Y. 2012. The response of carbohydrate metabolism to the fluctuation of relative humidity (RH) in the desert soil cyanobacterium Phormidium tenue. Eur. J. Soil Biol. 48: 11–16. https://doi.org/10.1016/j.ejsobi.2011.10.002

Fremy P. 1935. Schizophyta: Cyanophyceae. Exploration du Parc National Albert: Mission H. Damas. 19: 17–51.

Galun M., Garty J. 2001. Biological soil crust of Middle East. In: Biological Soil Crusts: Structure, Function and Management. Berlin: Springer. Pp. 95–106. https://doi.org/10.1007/978-3-642-56475-8_8

Gomont M. 1892. Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. Lyngbyées. Ann. Sci. Nat. Bot. Sér. 7(16): 91–264.

Gupta R.K., Kumar M., Paliwal G.S. 2006. Glimpses of cyanobacteria. New Delhi: Daya Publ. House. 151 p.

Harel Y., Ohad I., Kaplan A. 2004. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol. 136(2): 3070–3079. https://doi.org/10.1104/pp.104.047712 https://www.ncbi.nlm.nih.gov/pubmed/15466226 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC523368

Hoekstra F.A., Golovina E.A., Buitink J. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 431–438. https://doi.org/10.1016/s1360-1385(01)02052-0

Klähn S., Hagemann M. 2011. Compatible solute biosynthesis in cyanobacteria. Environ. Microbiol. 13: 551–562. https://doi.org/10.1111/j.1462–2920.2010.02366.x https://www.ncbi.nlm.nih.gov/pubmed/21054739

Komárek J., Anagnostidis K. 2005. Cyanoprokaryota. 2. Teil: Oscillatoriales. In: Süsswasserflora von Mitteleuropa. Vol. 19. München: Elsevier Spektrum Akad. Verlag. 759 p.

Komárek J., Komárková J. 2004. Taxonomic review of the cyanoprokaryotic genera Planktothrix and Planktothricoides. Czech Phycol. 4: 1–18.

Komárek J., Komárková-Legnerová J. 2007. Taxonomic evaluation of the cyanobacterial microflora from alkaline marches of northen Beliz. 1. Phenotipic diversity of coccoid morphotypes. Nova Hedw. 84: 65–111. https://doi.org/10.1127/0029-5035/2007/0084-0065

Komárková-Legnerová J., Cronberg G. 1992. New and recombined filamentous Cyanophytes from lakes in South Scania, Sweden. Algol. Stud. 67: 21–32.

Makandar M.B., Bhatnagar A. 2010. Morphotypic diversity of microalgae in arid zones of Rajasthan. J. Algal Biomass Utln. 1(2): 74–92.

Martins M.D., Branco L.H.Z., Werner V.R. 2012. Cyanobacteria from coastal lagoons of southern Brazil: coccoid organisms. Braz. J. Bot. 35: 31–48. https://doi.org/10.1590/S1806-99592012000100005

Misra S., Kaushik B.D. 1989. Growth promoting substances of cyanobacteria. II. Detection of aminoacids, sugars and auxins. Proc. Indian Nat. Sci. Acad. 55: 499–503.

Nazifi E., Wada N., Asano T., Nishiuchi T., Iwamoto Y., Chinaka S., Matsugo S., Sakamoto T. 2015. Characterization of the chemical diversity of glycosylate mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. J. Photochem. Photobiol. Biology. 142: 154–168. https://doi.org/10.1016/j.jphotobiol.2014.12.008 https://www.ncbi.nlm.nih.gov/pubmed/25543549

Potts M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755–805. https://www.ncbi.nlm.nih.gov/pubmed/7854254 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372989

Potts M. 1999. Mechanisms of dessication tolerance in cyanobacteria. Europ. J. Phycol. 34: 319–328. https://doi.org/10.1080/09670269910001736382

Roos J.C., Vincent W.F. 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 125: 118–125. https://doi.org/10.1046/j.1529-8817.1998.340118.x

Sant'Anna C.L., Azevedo M.T.P., Senna P.A.C., Komárek J., Komárková J. 2004. Planktic cyanobacteria from São Paulo State, Brazil: Chroococcales. Rev. Bras. Bot. 27: 213–227. https://doi.org/10.1590/S0100-84042004000200002

Schmidle W. 1901. Schizophyceae, Conjugatae, Chlorophyceae. Bot. Jahrb. Syst. 30(2): 240–253.

Sciuto K., Moro I. 2015. Cyanobacteria: the bright and dark side of a charming group. Biodivers. Conserv. 24(4): 711–738. https://doi.org/10.1007/s10531-015-0898-4

Singh R.K., Tiwari S.P., Rai A.K., Mohapatra T.M. 2011. Cyanobacteria: An emerging source for drug discovery. J. Antibiot. (Tokyo). 64: 401–412.

Singh R., Parihar P., Singh M., Bajguz A., Kumar J., Singh S. 2017. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front. Microbiol. 8: 515. https://doi.org/10.3389/fmicb.2017.00515 https://www.ncbi.nlm.nih.gov/pubmed/28487674 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403934

Tamaru Y., Takani Y. 2005. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327–7333. https://doi.org/10.1128/AEM.71.11.7327-7333.2005 https://www.ncbi.nlm.nih.gov/pubmed/16269775 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287664

Toldi O., Tuba Z., Scott P. 2009. Vegetative desiccation tolerance: is it a goldmine for bioengineering crops. Plant Sci. 176: 187–199. https://doi.org/10.1016/j.plantsci.2008.10.002

Werner V.R., Sant'Anna C.L. 2006. Occurrence of the rare genus Microcrocis P. Richter (Chroococcales, Cyanobacteria) in a coastal lagoon from southern Brazil. Rev. Bras. Bot. 29: 183–186. https://doi.org/10.1590/S0100-84042006000100016

Werner V.R., Sant'Anna C.L., Azeved M.T.P. 2008. Cyanoaggregatum brasiliense gen. et sp. nov., a new chroococcal Cyanobacteria from Southern Brazil. Rev. Bras. Bot. 31: 491–497. https://doi.org/10.1590/S0100-84042008000300012

Werner V.R., Cabezudo M.M., Silva L.M., Neuhaus E.B. 2015. Cyanobacteria from two subtropical water bodies in southernmost Brazil. Iheringia. Ser. Bot. 70: 357–374.

Wynn-Williams D.D. 2000. Cyanobacteria in deserts - life at the limit. In: The Ecology of Cyanobacteria - Their Diversity in Time and Space. Dordrecht: Kluwer Acad. Publ. Pp. 341–366. https://doi.org/10.1007/0-306-46855-7_13

Citation

Shamina M. 2020. First report on cyanobacterial flora from Masirah Island, Sultanate of Oman. Algologia. 30(4): 440–451. https://doi.org/10.15407/alg30.04.440