Epipelic cyanobacterial diversity in Pinang River basin, Malaysia, revealed by 16S-based metagenomic approach

Authors

Nur Fadzliana A.R.1, Wan Maznah W.O.1,2,3*, Nor S.A.M.1, Choon Pin Foong1, Luo Wei4
1 School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
2 Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Penang, Malaysia
3 River Engineering and Urban Drainage Research Centre, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
4 SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China

Section:

Procedure

Issue:

Vol. 31 No. 1 (2021)

Pages:

93–113

DOI:

https://doi.org/10.15407/alg31.01.093

Abstract

Cyanobacteria are the most widespread group of photosynthetic prokaryotes. They are primary producers in a wide variety of habitats and are able to thrive in harsh environments, including polluted waters; therefore, this study was conducted to explore the cyanobacterial populations inhabiting river tributaries with different levels of pollution. Sediment samples (epipelon) were collected from selected tributaries of the Pinang River basin. Air Terjun (T1) and Air Itam rivers (T2) represent the upper streams of Pinang River basin, while Dondang (T3) and Jelutong rivers (T4) are located at in the middle of the river basin. The Pinang River (T5) is located near the estuary and is subjected to saline water intrusion during high tides. Cyanobacterial community was determined by identifying the taxa via 16S rRNA gene amplicon sequence data. 16S rRNA gene amplicons generated from collected samples were sequenced using illumina Miseq, with the targeted V3 and V4 regions yielding approximately 1 mln reads per sample. Synechococcus, Phormidium, Arthronema and Leptolyngbya were found in all samples. Shannon-Weiner diversity index was highest (H’ = 1.867) at the clean upstream station (T1), while the moderately polluted stream (T3) recorded the lowest diversity (H’ = 0.399), and relatively polluted stations (T4 and T5) recorded fairly high values of H’. This study provides insights into the cyanobacterial community structure in Pinang River basin via cultivation-independent techniques using 16S rRNA gene amplicon sequence. Occurrence of some morphospecies at specific locations showed that the cyanobacterial communities are quite distinct and have specific ecological demands. Some species which were ubiquitous might be able to tolerate varied environmental conditions.

Keywords:

Cyanobacteria, species composition, Pinang River basin, 16S rRNA

References

Abed R.M.M., Garcia-Pichel F., Hernández-Mariné. 2002a. Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Arch. Microbiol. 177: 361–370. https://doi.org/10.1007/s00203-001-0390-2 https://www.ncbi.nlm.nih.gov/pubmed/11976745s

Abed R.M.M., Safi N.M.D., Koster J., de Beer D., El-Nahhal Y., Rullkotter J., Garcia-Pichel F. 2002b. Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl. Environ. Microbiol. 68(4): 1674–1683. https://doi.org/10.1128/AEM.68.4.1674–1683.2002 https://www.ncbi.nlm.nih.gov/pubmed/11916684 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC123877

Azizan A.A., Radzi R., Wan Maznah W.O., Convey P., Merican F.M.S. 2020. First Records of morphological diversity and ecology of periphytic Cyanobacteria from Tukun River, Penang forest reserve, Malaysia. Tropic. Life Sci. Res. 31(1): 85–105. https://doi.org/10.21315/tlsr2020.31.1.6 https://www.ncbi.nlm.nih.gov/pubmed/32963713 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485535

Boyer S.L., Johansen J.R., Flechtner V.R., Howard G.L. 2002. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of 16S rRNA gene and associated 16S-23S ITS region. J. Phycol. 38(6): 1222–1235. https://doi.org/10.1046/j.1529–8817.2002.01168.x

Camacho A., Vicente E., Miracle M.R. 2000. Ecology of deep-living Oscillatoria (= Planktothrix) population in the sulphide-rich waters of a Spanish karstic lake. Arch. Hydrobiol. 148(3): 333–355. https://doi.org/10.1127/archiv-hydrobiol/148/2000/333

Caporaso J.G., Kuczynski J., Stombaugh J. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7(5): 335–336. https://doi.org/10.1038/nmeth.f.303 https://www.ncbi.nlm.nih.gov/pubmed/20383131 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156573

Carini P., Marsden P.J., Leff J.W., Morgan E.E., Strickland M.S., Fierer N. 2016. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2(3): 16242. https://doi.org/10.1038/nmicrobiol.2016.242 https://www.ncbi.nlm.nih.gov/pubmed/27991881

Cavicchioli R., Erdmann S. 2015. The discovery of Antarctic RNA viruses: a new game changer, Mol. Ecol. 24(19): 4809–4811. https://doi.org/10.1111/mec.13387 https://www.ncbi.nlm.nih.gov/pubmed/26417900

Chaneva G., Furnadzhieva S., Minkova K., Lukavsky J. 2007. Effect of light and temperature on the cyanobacterium Arthronema africanum - a prospective phycobiliprotein-producing strain. J. Appl. Phycol. 19(5): 537–544. https://doi.org/10.1007/s10811-007-9167-6

Clark W., Christopher K. 2000. An introduction to DNA: Spectrophotometry, degradation and the 'Frankengel' experiment. Tested Stud. Lab. Teaching. 22: 81–99.

Covarrubias Rubio Y., Cantoral Uriza E.A., Casas Flores J.S., García Meza J.V. 2016. Thermophile mats of microalgae growing on the woody structure of a cooling tower of a thermoelectric power plant in Central Mexico. Rev. Mexic. Biodivers. 87(2): 277–287. https://doi.org/10.1016/j.rmb.2016.04.001

Creer S., Deiner K., Frey S., Porazinska D., Taberlet P., Thomas W.K., Potter C., Bik H.M. 2016. The ecologist's field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7(9): 1008–1018. https://doi.org/10.1111/2041-210X.12574

Crispim C.A., Gaylarde C.C. 2005. Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial Ecol. 49(1): 1–9. https://doi.org/10.1007/s00248-003-1052-5 https://www.ncbi.nlm.nih.gov/pubmed/15883863

Cronberg G., Carpenter E.J., Carmichael W.W. 2003. Taxonomy of harmful cyanobacteria. In: Manual on Harmful Marine Microalgae. Paris: UNESCO Publ. Pp. 523–562.

DeSantis T.Z., Hugenholtz P., Keller K., Brodie E.L., Larsen N., Piceno Y.M., Andersen G.L. 2006. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucl. Acids Res. 34(2): 394–399. https://doi.org/10.1093/nar/gkl244 https://www.ncbi.nlm.nih.gov/pubmed/16845035 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538769

Douterelo I., Perona E., Mateo P. 2004. Use of cyanobacteria to assess water quality in running waters. Environ. Pollut. 127(3): 377–384. https://doi.org/10.1016/j.envpol.2003.08.016 https://www.ncbi.nlm.nih.gov/pubmed/14638298

Dvořák P., Hindák F., Hašler P., Hindakova A., Poulíčková A. 2014. Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Synechococcales). Phytotaxa. 170(1): 24–34. https://doi.org/10.11646/phytotaxa.170.1.3

Eiler A., Drakare S., Bertilsson S., Pernthaler J., Peura S., Rofner C., Simek K., Yang Y., Znachor P., Lindström E.S. 2013. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE. 8(1): 1–10. https://doi.org/10.1371/journal.pone.0053516 https://www.ncbi.nlm.nih.gov/pubmed/23349714 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551911

Gaget V., Lau M., Sendall B., Froscio S., Humpage A.R. 2017. Cyanotoxin: which detection techniques for an optimum risk assessment ? Water Res. 118: 227–238. https://doi.org/10.1016/j.watres.2017.04.025 https://www.ncbi.nlm.nih.gov/pubmed/28433693

Garcia-Pichel F., Wojciechowski M.F. 2009. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One. 4(11): e7801. https://doi.org/10.1371/journal.pone.0007801 https://www.ncbi.nlm.nih.gov/pubmed/19924246 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773439

Graham J.L., Loftin K.A., Kamman N. 2009. Monitoring recreational freshwaters. Lakelines. 29: 18–24.

Hammer Ø., Harper D.A., Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1): 1–9.

Harke M.J., Steffen M.M., Gobler C.J., Otten T.G., Wilhelm S.W., Wood S.A., Paerl H.W. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp., Harmful Algae. 54: 4–20. https://doi.org/10.1016/j.hal.2015.12.007 https://www.ncbi.nlm.nih.gov/pubmed/28073480

Harris J.K., Caporaso J.G., Walker J.J., Spear J.R., Gold N.J., Robertson C.E., Hugenholtz P., Goodrich J., McDonald D., Knights D., Marshall P. 2013. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7(1): 50–60. https://doi.org/10.1038/ismej.2012.79 https://www.ncbi.nlm.nih.gov/pubmed/22832344 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526174

Ho L., Kayal N., Trolio R., Newcombe G. 2010. Determining the fate of Microcystis aeruginosa cells and microcystin toxins following chlorination. Water Sci. Technol. 62(2): 442–450. https://doi.org/10.2166/wst.2010.448 https://www.ncbi.nlm.nih.gov/pubmed/20651451

Kaštovská K., Elster J., Stibal M., Šantrůčková H. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb. Ecol. 50(3): 396–407. https://doi.org/10.1007/s00248-005-0246-4 https://www.ncbi.nlm.nih.gov/pubmed/16328651

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 41(1): 1–11. https://doi.org/10.1093/nar/gks808 https://www.ncbi.nlm.nih.gov/pubmed/22933715 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592464

Komárek J., Anagnostidis K. 2005. Cyanoprokaryota. 2. Teil: Oscillatoriales. In: Süßwasserflora vonMitteleuropa. Bd 19/2. Munchen: Elsevier GmbH. Pp. 17–59.

Komárek J., Sanť Anna C.L., Bohunická M., Mareš J., Hentschke S., Rigonato J., Fiore M.F. 2013. Phenotype diversity and phylogeny of selected Scytonema - species (Cyanoprokaryota) from SE Brazil. Fottea Olomouc. 13(2): 173–200. https://doi.org/10.5507/fot.2013.015

Komárek J., Kastovsky J., Mares J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 86: 295–335.

Krupke A., Lavik G., Halm H., Fuchs B.M., Amann R.I., Kuypers M.M. 2014. Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean. Environ. Microbiol. 16(10): 3153–3167. https://doi.org/10.1111/1462–2920.12431 https://www.ncbi.nlm.nih.gov/pubmed/24612325

Kumar M., Sundaram S., Gnansounou E., Larroche C., Thakur I.S. 2018. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Biores. Technol. 247: 1059–1068. https://doi.org/10.1016/j.biortech.2017.09.050 https://www.ncbi.nlm.nih.gov/pubmed/28951132

Lambrechts S., Willems A., Tahon G. 2019. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Front. Microbiol. 10: 1–242. https://doi.org/10.3389/fmicb.2019.00242 https://www.ncbi.nlm.nih.gov/pubmed/30828325 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385771

Li Y., Lin Y., Loughlin P.C., Chen M. 2014. Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris - a filamentous cyanobacterium containing chlorophyll f. Front. Plant Sci. 5: 1–67. https://doi.org/10.3389/fpls.2014.00067

Lutz S., Anesio A.M., Field K., Benning L.G. 2015. Integrated 'omics', targeted metabolite and single-cell analyses of Arctic snow algae functionality and adaptability. Front. Microbiol. 6: 13–23. https://doi.org/10.3389/fmicb.2015.01323

Margheri M.C., Bosco M., Giovannetti L., Ventura S. 2002. Assessment of the genetic diversity of halotolerant coccoid cyanobacteria using amplified 16S rDNA restriction analysis. FEMS Microbiol. Lett. 173: 9–16. https://doi.org/10.1111/j.1574–6968.1999.tb13478.x

Merican F., Wan Asmadi W.A., Wan Maznah W.O., Mashhor Mansor. 2006. A note on the freshwater algae of Gunung Strong, Kelantan, Malaysia. Trop. Life Sci. Res. 17: 65–76.

Misson B., Sabart M., Amblard C., Latour D. 2012. Benthic survival of Microcystis: Long-term viability and ability to transcribe microcystin genes. Harm. Algae. 13: 20–25. https://doi.org/10.1016/j.hal.2011.09.010

Munir M., Qureshi R., Ilyas M., Munazir M., Leghari M.K. 2016. Systematics of Chroococcus from Pakistan. Pak. J. Bot. 48(1): 255–262.

Nübel U., Garcia-Pichel F., Muyzer G. 2000. The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina spp. Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50: 1265–1277. https://doi.org/10.1099/00207713-50-3-1265 https://www.ncbi.nlm.nih.gov/pubmed/10843072

Offem B.O., Ayotunde E.O., Ikpi G.U., Ada F.B., Ochang S.N. 2011. Plankton-based assessment of the trophic state of three tropical lakes. J. Environ. Protect. 2: 304–315. https://doi.org/10.4236/jep.2011.23034

O'Neill M., McPartlin J., Arthure K., Riedel S., McMillan N.D. 2011. Comparison of the TLDA with the Nanodrop and the reference Qubit system. J. Phys.: Conf. Ser. IOP Publ. 012047. https://doi.org/10.1088/1742-6596/307/1/012047

Ortiz-Estrada Á.M., Gollas-Galván T., Martínez-Cordova L.R., Martínez Porchas M. 2019. Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. Rev. Aquacult. 11(1): 234–245. https://doi.org/10.1111/raq.12237

Paerl H.W., Pinckney J.L., Steppe T.F. 2000. Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2(1): 11–26. https://doi.org/10.1046/j.1462–2920.2000.00071.x https://www.ncbi.nlm.nih.gov/pubmed/11243256

Pancrace C., Barny M.A., Ueoka R., Calteau A., Scalvenzi T., Pédron J., Gugger M. 2017. Insights into the Planktothrix genus: Genomic and metabolic comparison of benthic and planktic strains. Sci. Rep. 7: 41181. https://doi.org/10.1038/srep41181 https://www.ncbi.nlm.nih.gov/pubmed/28117406 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259702

Podani J. 1992. Monitoring system. In: Biological Indicators in Environmental Protection. New York: Ellis Horwood. Pp. 12–16.

Rinkel B.E., Manoylov K.M. 2014. Calothrix - an evaluation of freshwater species in United States rivers and streams, their distribution and preliminary ecological findings. Proc. Acad. Nat. Sci. Philadelphia. 163: 43–59. https://doi.org/10.1635/053.163.0108

Roslan MA.M., Mohamad M.A.N., Omar S.M. 2017. High quality DNA from peat soil for metagenomic studies: a mini review on DNA extraction. Science. 1(2): 1–6. https://doi.org/10.26480/gws.02.2017.01.06

Schluter D., Pennell M.W. 2017. Speciation gradients and the distribution of biodiversity. Nature. 546(7656): 48–55. https://doi.org/10.1038/nature22897 https://www.ncbi.nlm.nih.gov/pubmed/28569797

Sharma R., Sharma V., Sharma M.S. Kumar V.B., Rachana M., Singh G.K. 2011. Studies on limnological characteristic, planktonic diversity and fishes (species) in Lake Pichhola, Udaipur, Rajasthan (India). Univ. J. Environ. Res. Technol. 1: 274–285.

Sigler W.V., Bachofen R., Zeyer J. 2003. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ. Microbiol. 5(7): 618–627. https://doi.org/10.1046/j.1462–2920.2003.00453.x https://www.ncbi.nlm.nih.gov/pubmed/12823194

Singh R.S., Thakur S.R., Bansal P. 2015. Algal lectins as promising biomolecules for biomedical research. Critical Rev. Microbiol. 41(1): 77–88. https://doi.org/10.3109/1040841X.2013.798780 https://www.ncbi.nlm.nih.gov/pubmed/23855360 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113906

Smythe W.F., McAllister S.M., Hager K.W., Hager K.R., Tebo B.M., Moyer C.L. 2016. Silica Biomineralization of Calothrix-Dominated Biofacies from Queen's Laundry Hot-Spring, Yellowstone National Park, USA. Front. Environ. Sci. 4: 1–40. https://doi.org/10.3389/fenvs.2016.00040

Soliman T., Yang S., Yamazaki T. 2017. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ. 5(e4178): 1–16. https://doi.org/10.7717/peerj.4178 https://www.ncbi.nlm.nih.gov/pubmed/29302394 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740954

Sønstebø J.H., Rohrlack T. 2011. Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 77(4): 1344–1351. https://doi.org/10.1128/AEM.02153-10 https://www.ncbi.nlm.nih.gov/pubmed/21169434 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067206

Taton A., Grubisic S., Balthasart P., Hodgson D.A., Laybourn-Parry J., Wilmotte A. 2006. Biogeographical distribution and ecological ranges of benthic. FEMS Microbiol. Ecol. 57(2): 272–289. https://doi.org/10.1111/j.1574–6941.2006.00110.x https://www.ncbi.nlm.nih.gov/pubmed/16867145

Wan Maznah W.O., Mansor M. 2000. Periphytic algal composition in Pinang River Basin, a case study on one of the most polluted rivers in Malaysia. J. Biosci. 11(1): 53–67.

Wan Maznah W.O., Mansor M. 2002. Aquatic pollution assessment based on attached diatom communities in the Pinang River Basin, Malaysia. Hydrobiologia. 487(1): 229–241. https://doi.org/10.1023/A:1022942200740

Wan Maznah W.O., Makhlough A. 2015. Water quality of a tropical reservoir based on spatio-temporal variation of phytoplankton composition and physico-chemical analysis. Int. J. Environ. Sci. Technol. 12(7): 2221–2232. https://doi.org/10.1007/s13762-014-0610-3

Wan Ruslan Ismail. 2000. The hydrology and sediment yield of the Sungai Air Terjun catchment, Penang Hill, Malaysia. Hydrol. Sci. J. 45(6): 897–910. https://doi.org/10.1080/02626660009492391

Wierzchos J., de los Ríos A., Ascaso C. 2013. Microorganisms in desert rocks: the edge of life on Earth. Int. Microbiol. 15: 171–181.

Wilfinger W.W., Mackey K., Chomcyznski P. 1997. Nanodrop technologies 260/280 and 260/230 ratios nanodrop @ ND-1000 and ND-8000 8-sample spectrophotometers. BioTechniques. 22: 474–481.

Citation

Nur Fadzliana A.R., Wan Maznah W.O., Nor S.A.M., Choon Pin Foong, Luo Wei. 2021. Epipelic cyanobacterial diversity in Pinang River basin, Malaysia, revealed by 16S-based metagenomic approach. Algologia. 31(1): 93–113. https://doi.org/10.15407/alg31.01.093