The analysis of the genetic polymorphism of Chlorella vulgaris Beyer. culture growing in the presence of sodium selenite, zinc sulfate and chromium chloride

Authors

Bodnar O.I.1*, Andreev I.O.2, Prokopiak M.Z.1, Drobyk N.M.1, Grubinko V.V.1
1 Volodymyr Hnatiuk Ternopil National Pedagogical University, 2 M. Kryvonosa Str., Ternopil 46027, Ukraine
2 The Institute of Molecular Biology and Genetics of NASU, 150 Zabolotnogo Str., Kyiv 03143, Ukraine

Section:

Genetics

Issue:

Vol. 31 No. 2 (2021)

Pages:

113–125

DOI:

https://doi.org/10.15407/alg31.02.113

Abstract

The use of microalgae for the economic needs and the commercial goals determines the areas of the scientific researches that will make it possible to increase their productivity. It is also important to direct the metabolism of the algae to the activating of certain synthetic processes in order to obtain the desired compounds. The metals and non-metals, entering into the cell, have a high biochemical activity. These elements modify the metabolic reactions in general and the metabolic reactions related to the functioning of the genome of microalgae cells. Aim. The aim was to study the genetic polymorphism of Chlorella vulgaris under the action of such trace elements as selenium, zinc and chromium in order to optimize the methods of algae cultivation and the obtaining of the beneficial compounds. Methods. The hydrobiological methods of algae cultivation, DNA isolation method by Rogers S. and Bendich A. (1985), PCR-analysis with ISSR (inter simple sequence repeats)- and IRAP-markers (inter-retransposon amplified polymorphism) have been used. Results. For all samples of C. vulgaris 109 DNA-fragments were obtained and 42 of them were polymorphic (38.5%). Jacquard distances (DJ) between the samples of C. vulgaris culture (cultures are grown on the media with different elements compositions and control (standard conditions) were 0.232 (only selenite), 0.206 (selenite and zinc) and 0.300 (selenite and chromium). Conclusions. Probably the genetic modifications of C. vulgaris cells are caused by the additional introduction of the microelements into the culture medium. The genetic polymorphism of the algae grown on media with various trace elements and their combinations was like the genetic polymorphism of the unicellular green algae grown in the natural conditions. It indicates the absence of significant genotoxic effects of the trace elements and high metabolic and genetic plasticity of algal culture.

Keywords:

Chlorella vulgaris, microelements, ISSR- and IRAP-PCR, genetic polymorphism, Jacquard distance

References

Afkar E., Ababna H., Fathi A.A. 2010. Toxicological response of the green alga Chlorella vulgaris to some heavy metals. Am. J. Environ. Sci. 6(3): 230–237. https://doi.org/10.3844/ajessp.2010.230.237

Alzahrani A.M. 2013. ISSR-PCR-based genetic diversity analysis on copper-tolerant versus wild type strains of the unicellular alga Chlorella vulgaris. Sci. J. King Faisal Univ. Basic and Appl. Sci. 14(2): 63–78.

Bera S., De Rosa V., Rachidi W., Diamond А. 2013. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis. 28(2): 127–134. https://doi.org/10.1093/mutage/ges064 https://www.ncbi.nlm.nih.gov/pubmed/23204505 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570792

Bodnar O.I., Kovalska H.B., Grubinko V.V. 2018. Regulation of biosynthesis of lipids in Chlorella vulgaris by compounds of Zinc, Chromium and Selenium. Regul. Mech. Biosyst. 9(2): 267–274. https://doi.org/10.15421/021839

Cervantes C., Campos-Garc J., Devars S., Gutierrez-Corona F., Loza-Tavera H., Torres-Guzman J.C. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25(3): 335–347. https://doi.org/10.1111/j.1574–6976.2001.tb00581.x https://www.ncbi.nlm.nih.gov/pubmed/11348688s

Deng H., Liu H., Li X., Xiao J., Wang S.A. 2012. CCCH-type zinc finger nucleic acid binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol. 158(2): 876–889. https://doi.org/10.1104/pp.111.191379 https://www.ncbi.nlm.nih.gov/pubmed/22158700 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271775

Fang Z., Zhao M., Zhen H., Chen L., Shi P., Huang Z. 2014. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLOS ONE. 9(8): 103–194. https://doi.org/10.1371/journal.pone.0103194 https://www.ncbi.nlm.nih.gov/pubmed/25111056 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128586

Ferguson L.R., Karunasinghe N., Zhu S., Wang A.H. 2012. Selenium and its' role in the maintenance of genomic stability. Mutat. Res. 733(1-2): 100–110. https://doi.org/10.1016/j.mrfmmm.2011.12.011 https://www.ncbi.nlm.nih.gov/pubmed/22234051s

Fischer J.L., Lancia J.K., Mathur A., Smith M.L. 2006. Selenium potection from DNA damage involves a Ref1/p53/Brca1 protein complex. Anticancer Res. 26(2A): 899–904.

Hovde B.T., Hanschen E.R., Tyler C.R., Lo C.C., Kunde Y., Davenport K., Daligault H., Msanne J., Canny S., Eyun S.I., Riethoven J.J. 2018. Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae). Algal Res. 35: 449–461. https://doi.org/10.1016/j.algal.2018.09.012

Kebeish R., El-Ayouty Y., Husain A. 2014. Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. World Res. J. Biol. & Biol. Sci. 2(2): 34–43.

Laity J.H., Lee B.M., Wright P.E. 2001. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11(1): 39–46. https://doi.org/10.1016/S0959-440X(00)00167-6

Liu J., Hu Q. 2013. In: Handbook of Microalgal Culture. Applied Phycology and Biotechnology. Oxford: Wiley, Ltd. Pр. 339–349.

Lukashiv O.Y., Bodnar O.I., Grubinko V.V. 2017. Accumulation of Chromium and Selenium inside cells and in lipids of Сhlorella vulgaris Beijer. during the incubation from chromium by sodium chloride and selenium. Int. J. Algae. 19(4): 357–366. https://doi.org/10.1615/InterJAlgae.v19.i4.60

Maeda S., Mizoguchi M., Ohki A., Takeshita T. 1990. Bioaccumulation of zinc and cadmium in freshwater alga, Chlorella vulgaris. Pt I. Toxicity and accumulation. Chemosphere. 21(8): 953–963. https://doi.org/10.1016/0045-6535(90)90118-D

Malyshev S.V., Kartel N.A. 1997. Mol. Biol. 31(2): 197–208. [Малышев С.В., Картель Н.А. Молекулярные маркеры в генетическом картировании растений. Мол. биол. 31(2): 197-208].

Meisch H.U., Schmitt-Beckmann I. 1979. Influence of tri-and hexavalent chromium on two Chlorella strains. Z. Pflanzenphysiol. 94(3): 231–239. https://doi.org/10.1016/S0044-328X(79)80162-2

Mostafa N., Omar H., Tan S.G., Napis S. 2011. Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations using ISSR and RAPD molecular marker. Molecules. 16(3): 2598–2608. https://doi.org/10.3390/molecules16032599 https://www.ncbi.nlm.nih.gov/pubmed/21441863 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6259651

Peakall R., Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Not. 6(1): 288–295. https://doi.org/10.1111/j.1471–8286.2005.01155.x

Peng X., Zhao Y., Cao J., Zhang W., Jiang H., Li X. 2012. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLOS ONE. 7(7): e40120. https://doi.org/10.1371/journal.pone.0040120 https://www.ncbi.nlm.nih.gov/pubmed/22792223 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391233

Qian H., Sun Z., Sun L., Jiang Y., Wei Y., Xie J., Fu Z. 2013. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere. 93(6): 885–891. https://doi.org/10.1016/j.chemosphere.2013.05.035 https://www.ncbi.nlm.nih.gov/pubmed/23786815

Richmond A., Hu Q. 2013. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Oxford: John Wiley & Sons, Ltd. 736 p. https://doi.org/10.1002/9781118567166

Rogers S.O., Bendich A.J. 1985. Extraction of DNA from milligram amounts of fresh herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69–76. https://doi.org/10.1007/BF00020088 https://www.ncbi.nlm.nih.gov/pubmed/24306565

Roshani O., Mohd Syahril M.Z., Mohd Hafiz R. 2012. Genetic Polymorphisms of unicellular green algae strains using random amplified polymorphic DNA. In: Proceedings of the International Conference on Science, Technology and Social Sciences (ICSTSS). Kuantan (Singapore): Springer. Pp. 635–640. https://doi.org/10.1007/978-981-287-077-3_75

Schluter P.M., Harris S.A. 2006. Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Not. 6(2): 569–572. https://doi.org/10.1111/j.1471–8286.2006.01225.x

Shen S. 2008. Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa. Chin. J. Oceanol. Limnol. 26(4): 380–384. https://doi.org/10.1007/s00343-008-0380-1

Shrestha R.P., Haerizadeh F., Hildebrand M. 2013. In: Handbook of Microalgal Culture. Applied Phycology and Biotechnology. Oxford: Wiley, Ltd. Pp. 146–167. https://doi.org/10.1002/9781118567166.ch10

Skrivan M., Skrivanova V., Dlouha G., Branyikova I., Zachleder V., Vitova M. 2010. The use of selenium-enriched alga Scenedesmus quadricauda in chicken diet. Czech J. Anim. Sci. 55(12): 565–571. https://doi.org/10.17221/2480-CJAS

Sun X., Zhong Y., Huang Z., Yang Y. 2014. Selenium accumulation in unicellular green algae Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLOS ONE. 9(11): e112270. https://doi.org/10.1371/journal.pone.0112270 https://www.ncbi.nlm.nih.gov/pubmed/25375113 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223018

Thiriet-Rupert S., Carrier G., Chenais B., Trottier C., Bougaran G., Cadoret J-P. 2016. Transcription factors in microalgae: genome-wide prediction and comparative analysis. BMC Genom. 17: 282–298. https://doi.org/10.1186/s12864-016-2610-9 https://www.ncbi.nlm.nih.gov/pubmed/27067009 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827209

Topachevskiy A.V. 1975. Methods of physiological and biochemical studies of algae in hydrobiological practice. Kyiv: Naukova Dumka. 248 p. [Топачевский А.В. 1975. Методы физиолого-биологического исследования водорослей в гидробиологической практике. Киев: Наук. думка. 248 с.].

Vincent J.B. 2013. Chromium: is it essential, pharmacologically relevant, or toxic? Met. Ions Life Sci. 13: 171–198. https://doi.org/10.1007/978-94-007-7500-8_6 https://www.ncbi.nlm.nih.gov/pubmed/24470092

Wongsawad P., Peerapornpisal Y., Wongsawad C. 2015. Molecular characterization of Spirogyra from Northern Thailand using inter simple sequence repeat (ISSR). J. Adv. Biol. Biotechnol. 3(2): 144–153. https://doi.org/10.9734/JABB/2015/13875

Yoshida S., Haratake M., Fuchigami T., Nakayama M. 2011. Selenium in Seafood Materials. J. Health Sci. 57(3): 215–224. https://doi.org/10.1248/jhs.57.215

Zhou G.J., Peng F.Q., Zhang L.J., Ying G.G. 2012. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 19(7): 2918–2929. https://doi.org/10.1007/s11356-012-0800-9 https://www.ncbi.nlm.nih.gov/pubmed/22327643

Citation

Bodnar O.I., Andreev I.O., Prokopiak M.Z., Drobyk N.M., Grubinko V.V. 2021. The analysis of the genetic polymorphism of Chlorella vulgaris Beyer. culture growing in the presence of sodium selenite, zinc sulfate and chromium chloride. Algologia. 31(2): 113–125. https://doi.org/10.15407/alg31.02.113