ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 2 of 7
Up
Algologia 2021, 31(4): 320–336
https://doi.org/10.15407/alg31.04.320
Physiology, Biochemistry, Biophysics

The effect of culture medium of Interfillum terricola (J.B.Petersen) Mikhailyuk et al. (Charophyta) on allelopathic, microbiological, agrophysical and agrochemical characteristics of soil

Tsarenko P.M.1, Zaimenko N.V.2, Didyk N.P.2, Ellanska N.E.2, Pavlyuchenko N.A.,2 Ivanytska B.O.2, Yunosheva O.P.2, Demchenko E.M.1
Abstract

The influence of the cultural medium of the charophyte Interfillum terricola on the allelopathic, microbiological, agrophysical and agrochemical properties of the soil have been studied in model pot experiments. Allelopathic soil regime was assessed by biological testing methods for water-soluble compounds and direct biotesting, as well as by vital indicators of plants-phytometers of winter wheat (Triticum aestivum L., variety "Smuglyanka") and fodder corn (Zea mays L., variety "Kadr 267 MB"). The seeds were sown immediately after the introduction of the culture fluid. The number of germinated seeds was recorded from the 2nd to the 8th day after sowing. The vital condition of phytometer plants was evaluated at the end of the experiments by morphometric indicators of growth (leaf surface area, dry matter biomass of aboveground parts and roots) and the content of photosynthetic pigments in the leaves. When the experiment was completed, soil samples were taken to determine the cytostatic effect of water-soluble compounds and to carry out microbiological and biochemical analyzes. Phenolic compounds were isolated from the soil by ion exchange (desorption) using an ion exchanger KU-2-8 (Н+). In parallel, the electrical conductivity, redox potential, pH and content of nutrients in the soil were determined. The stimulating effect of cultural medium on seed germination, growth and development of assimilation organs of wheat and corn plants has been revealed. The strength of the effect did not depend on the concentration of growing medium, which is characteristic of signal allelopathically active substances. Allelopathic and cytostatic activity of the soil decreased with the use of Interfillum terricola growing medium. The introduction of the cultural fluid significantly affected the number of microorganisms of different ecological and trophic groups. The lowest number of microorganisms was observed at the minimum rate of introduction of microalga medium, and its increase contributed to the growth of the number of almost all studied groups of microorganisms, indicators of transformation and mineralization of organic matter. Under the influence of the cultural medium, the content of phenolic compounds in the soil decreased by 1.1–1.6 times, especially at the norm of 10 mL. The soil treated with cultural fluid had higher rates of transformation and mineralization of organic matter than untreated. The concentration of phenolic compounds in the soil decreased, apparently, due to the activation of the microbiota resulting in the intensification of the destruction processes. An increase in the electrical conductivity of the soil with the introduction of microalgae inoculum was recorded, which may indicate the release of metal ions into the substrate. This confirms the increase in Ca and Mg.

Keywords: Interfillum terricola, allelopathic interactions, winter wheat, phenolic substances, microbiocenosis, nutrients

Full text: PDF (Rus) 674K

References
  1. Andreiuk K.I., Iutynska H.O., Antypchuk A.F., Valahurova O.V., Kozyrytska V.Ye., Ponomarenko S.P. 2001. Functioning of microbial coenoses of soil in the conditions of anthropogenic loading. Kyiv: Oberehy. 240 p. [Андреюк К.І., Іутинська Г.О., Антипчук А.Ф., Валагурова О.В., Козирицька В.Є., Пономаренко С.П. 2001. Функціонування мікробних ценозів ґрунту в умовах антропогенного навантаження. Київ: Обереги. 240 c.].
  2. Balan V.M., Doronin V.A., Kulyk O.H., Zmiievskyi V.M. 2014. In: Scientific works of the Institute of Bioenergy Crops and Sugar Beets. Kyiv. Pp. 14-17. [Балан В.М., Доронін В.А., Кулік О.Г., Змієвський В.М. 2014. До питання методики оцінки та добору вихідних селекційних матеріалів цукрових буряків за ознакою репродуктивної системи та життєздатності насіння. В кн.: Наукові праці Інституту біоенергетичних культур і цукрових буряків. Київ. C. 14-17].
  3. Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 6318: 1–95.
  4. Cerna B., Elhottova D., Santruckova H. 2003. In: International Symposium on "Structure and Function of Soil Microbiota". Pp. 3–6.
  5. Chiaiese P., Corrado G., Colla G., Kyriacou M.C., Rouphael Y. 2018. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 9: 1782. https://doi.org/10.3389/fpls.2018.01782 https://www.ncbi.nlm.nih.gov/pubmed/30581447 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292864
  6. Didovich S.V., Alekseenko O.P., Pas' A.N., Didovich A.N. 2020. Phototrophic microorganisms for agricultural technology and food security: Mat. 6th Int. Conf. Earth Environ. Sci. 422: 012042. https://doi.org/10.1088/1755-1315/422/1/012042
  7. Ellanska N.E., Yunosheva O.P., Miao T. 2021. In: Modern methods in allelopathic research: Methodical manual. Kyiv: Lira-K. Pp. 107–116. [Елланська Н.Е., Юношева О.П., Мяо Т. 2021. Методи мікробіологічного аналізу ґрунту. В кн.: Сучасні методи в алелопатичних дослідженнях: Методичний посібник. Київ: Ліра-К. С. 107-116].
  8. Ettl H., Gärtner G. 2014. Syllabus der Boden-, Luft- und Flechtenalgen. 2nd ed. Munich: Spektrum Akad. Verlag. 773 p. https://doi.org/10.1007/978-3-642-39462-1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949288
  9. Guo B., Zhang Y., Li S., Lai T., Yang L., Chen J., Ding W. 2016. Extract from Maize (Zea mays L.): Antibacterial activity of DIMBOA and its Derivatives against Ralstonia solanacearum). Molecules. 21(10): 1397. https://doi.org/10.3390/molecules21101397 https://www.ncbi.nlm.nih.gov/pubmed/27775575 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273367
  10. Hastings K.L., Smith L.E, Lindsey M.L., Blotsky L.C., Downing G.R., Zellars D.Q., Downing J.K., Corena-McLeod M. 2014. Effect of microalgae application on soil algal species diversity, cation exchange capacity and organic matter after herbicide treatments. F1000Research. 3: 281. https://doi.org/10.12688/f1000research.4016.1
  11. Hollerbakh M.M., Shtina E.A. 1969. Soil algae. Leningrad: Nauka. 228 p. [Голлербах М.М., Штина Э.А. 1969. Почвенные водоросли. Л.: Наука. 228 с.].
  12. Ivanov V.B. 2011. Using the roots as test objects for the assessment of biological action of chemical substances. Rus. J. Plant Physiol. 58(6): 1082–1089. https://doi.org/10.1134/S1021443711060082
  13. Jaiswal P., Prasanna R., Nayak S., Sood A., Suseela M.R. 2008. Characterization of rhizo-cyanobacteria and their associations with wheat. Egy. J. Biol. 10: 20–27.
  14. Kirpenko N.Y. 2013. Allelopathic interaction of freshwater algae. Kyiv: Naukova Dumka. 255 p. [Кирпенко Н.И. 2013. Аллелопатическое взаимовлияние пресноводных водорослей. Киев: Наук. думка. 255 с.].
  15. Kostikov I.Yu. 1991. The place of soil algae in phytocenoses. Algologia 1(2): 93–97. [Костиков И.Ю. Место почвенных водорослей в фитоценозах. Альгология. 1(2): 93-97].
  16. Kraffczyk I., Tolldeiner G., Beringer H. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 16: 315–322. https://doi.org/10.1016/0038-0717(84)90025-7
  17. Kuznetsova Y.A., Bozhkov A.I., Menzyanova N.G., Goltvyansky A.V., Azeez Z.A. 2018. Root exudates of wheat seedlings express antibacterial and antioxidant activity and stimulate proliferation of liver cells. Indian J. Nat. Prod. Res. 9: 303–310.
  18. Li Z.-H., Wang Q., Ruan X., Pan C.-D., Jiang, D.-A. 2010. Phenolics and plant allelopathy. Molecules. 15(12): 8933–8952. https://doi.org/10.3390/molecules15128933 https://www.ncbi.nlm.nih.gov/pubmed/21139532 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6259130
  19. Maltseva I.A. 2007. Soil algae as a part of the functional ecosystems' structure. Gruntoznavstvo. 8(3–4): 71–79. [Мальцева І.А. Ґрунтові водорості у функціональній структурі біогеоценозів. Ґрунтознавство. 8(3–4): 71–79].
  20. McClintock J.B., Baker B.J. 2001. Marine chemical ecology. Boca Raton, FL: CRC Press. 609 p. https://doi.org/10.1201/9781420036602
  21. Mikhailyuk T.I., Sluiman H., Massalski A., Mudimu O., Demchenko E., Kondratyuk S., Friedl T. 2008. New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J. Phycol. 44: 1586–1603. https://doi.org/10.1111/j.1529–8817.2008.00606.x https://www.ncbi.nlm.nih.gov/pubmed/27039871s
  22. Mukha V.D. 2004. Natural-anthropogenic evolution of soils. Moscow: Kolos. 271 p. [Муха В.Д. Естественно-антропогенная эволюция почв. М.: Колос. 271 p.].
  23. Nichols K. 2020. Microalgae as a beneficial soil amendment. Myland Company LLC. 5 p.
  24. Pavliuchenko N.A., Didyk N.P., Li L. 2021. In: Modern methods in allelopathic research: Methodical manual. Kyiv: Lira-K. Pp. 117–147. [Павлюченко Н.А., Дідик Н.П., Лі Л. Колориметричні методи аналізу алелопатично активних речовин у рослинному матеріалі та ґрунті. В кн.: Сучасні методи в алелопатичних дослідженнях. Методичний посібник. Київ: Ліра-К. С. 117–147].
  25. Pavliuchenko N.A., Jang X. 2021. In: Modern methods in allelopathic research: Methodical manual. Kyiv: Lira-K. Pp. 74–89. [Павлюченко Н.А., Янг Х. 2021. Методи експрес-оцінювання алелопатичної активності (біотести). В кн.: Сучасні методи в алелопатичних дослідженнях: Методичний посібник. Київ: Ліра-К. С. 74–89].
  26. Pecheneva S.Ia. 1998. Agrochemical analysis methods. Havrysh. 4: 24–26. [Печенева С.Я. Методы агрохимического анализа. Гавриш. 4: 24–26].
  27. Rindi F., Mikhailyuk T.I., Sluiman H.J., Friedl T., López-Bautista J.M. 2011. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol. Phylog. Evol. 58: 218–231. https://doi.org/10.1016/j.ympev.2010.11.030 https://www.ncbi.nlm.nih.gov/pubmed/21145975s
  28. Rinkis H.Ia., Nollendorf V.F. 1982. Balanced nutrition of plants with macro- and microelements. Riga: Zynatne. 202 p. [Ринькис Г.Я., Ноллендорф В.Ф. 1982. Сбалансированное питание растений макро- и микроэлементами. Рига: Зинатне. 202 c.].
  29. Sakevych O.I., Usenko O.M. 2008. Allelopathy in hydroecosystems. Kyiv: Logos. 342 p. [Сакевич О.Й., Усенко О.М. 2008. Алелопатія в гідроекосистемах. Київ: Логос. 342 с.].
  30. Sood A., Singh P.K., Kumar A., Singh R. 2011. Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments. Biologia. 66: 104–110. https://doi.org/10.2478/s11756-010-0133-4
  31. Tsarenko P.M., Zaimenko N.V., Didyk N.P., Ivanytska B.O., Kharytonova I.P., Demchenko E.M. 2021. Allelopathic effect of microalgae on winter wheat plants. Algologia. 31(3): 215–227. [Царенко П.М., Заіменко Н.В., Дідик Н.П., Іваницька Б.О., Харитонова І.П., Демченко Е.М. 2021. Алелопатичний вплив мікроводоростей на пшеницю озиму. Альгологія. 31(3): 215–227]. https://doi.org/10.15407/alg31.03.215
  32. Uysal Ö., Ozdemir F., Ekinci K. 2015. Evaluation of Microalgae as Microbial Fertilizer. Eur. J. Sustain. Dev. 4: 77–82. https://doi.org/10.14207/ejsd.2015.v4n2p77
  33. Wellburn A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144: 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  34. Win T.T., Barone G.D., Secundo F., Fu P. 2018. Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind. Biotechnol. 14: 203–211. https://doi.org/10.1089/ind.2018.0010
  35. Xiong Q., Hu L.-X., Liu Y.-S., Zhao J.-L., He L.-Y., Ying G.-G. 2021. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ. Int. 155: 106594. https://doi.org/10.1016/j.envint.2021.106594 https://www.ncbi.nlm.nih.gov/pubmed/33940395s