Comparative analysis of methods for assessing the safety of Dunaliella salina Teodoresco and Chlorococcum dissectum Korshikov (Chlorophyta) microalgae cultures after exposure to stress factors

Authors

Chernobai N.A.*, Vozovik K.D., Kadnikova N.G.
Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, 23 Pereyaslavska Str., Kharkiv 61016, Ukraine

Section:

Physiology, Biochemistry. Biophysics

Issue:

Vol. 31 No. 4 (2021)

Pages:

353–364

DOI:

https://doi.org/10.15407/alg31.04.353

Abstract

The possibility of using various methods for determining the viability of cultures of microalgae Dunaliella salina and Chlorococcum dissectum before and after freezing-warming was investigated and analyzed. It has been established that the selection of an effective method should be carried out individually for each culture. For an integral assessment of the proliferative and metabolic activity of cells of both species of the studied microalgae, Alamar Blue-test and the ability to grow on liquid nutrient media can be used. The use of the Koch plate method, MTT-test and TTC staining is possible only for the microalga C. dissectum. Vital staining with trypan blue was found to be incorrect.

Keywords:

viability, microalgae, Chlorococcum dissectum, Dunaliella salina, Alamar Blue, MTT-test, TTC, trypan blue

References

Ahmed S.А., Gogal R.M., Walsh J.E. 1994. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to 3H-thymidine incorporation assay. J. Immunol. Meth. 2(170): 211–224. https://doi.org/10.1016/0022-1759(94)90396-4

Al-Rikabey M.N., Al-Mayah A.M. 2018. Cultivation of Chlorella vulgaris in BG-11 Media Using Taguchi Method. J. Adv Res. Dynamic. Control Syst. 10(7): 19–30.

Anikina L., Puchov S., Dubrovskaya S., Afanasyeva S., Klochkov S. 2014. Comparative determination of cell viability using MTT and resazurin. Fund. Res. 7(12): 1423–1427.

Aravantinou A.F., Manariotis I.D. 2016. Effect of operating conditions on Chlorococcum sp. growth and lipid production. J. Environ. Chem. Eng. 1(4): 1217–1223. https://doi.org/10.1016/j.jece.2016.01.028

Bonnier F., Keating M.E., Wróbel T.P., Majzner K., Baranska M., Garcia-Munoz A., Blanco A., Byrne H.J. 2015. Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol. in Vitro. 29: 124–131. https://doi.org/10.1016/j.tiv.2014.09.014 https://www.ncbi.nlm.nih.gov/pubmed/25300790

Borovkov А.В., Gudvilovich I.N., Avsiyan A.L., Memetshaeva O.A., Lelekov A.S., Noviko- va T.M., Kovalevsky A.O. 2019. Production characteristics of Dunaliella salina at two-phase pilot cultivation. Turk. J. Fisher. Aquat. Sci. 5(20): 401–408. https://doi.org/10.4194/1303-2712-v20_5_08

Byth H., Mcunu B., Dubery I. 2001. Assessment of a simple, non-toxic Alamar blue cell survival assay to monitor tomato cell viability. Phytochem. Anal. 5(12): 340–348. https://doi.org/10.1002/pca.595 https://www.ncbi.nlm.nih.gov/pubmed/11705263

Chernobai N., Kadnikova N., Kovalenko I. 2019. The role of cold adaptation in cryopreservation of Dunaliella salina Teod. microalgae. Advan. Biol. Earth Sci. 4(2): 119–127.

Chowdhury M., Sheikh A., Miskat S., Mala K. 2016. Triacylglycerol profile of a microalga Chlorococcum sp. as a potential biofuel feedstock. Bangladesh Acad. Sci. 2(40): 147–153. https://doi.org/10.3329/jbas.v40i2.30770

Del Egido L.L., Navarro-Miró D., Martinez-Heredia V., Toorop P.E., Iannetta P. 2017. A spectrophotometric assay for robust viability testing of seed batches using 2,3,5-Triphenyl Tetrazolium Chloride: using Hordeum vulgare L. as a model. Front. Plant Sci. 8: 747. https://doi.org/10.3389/fpls.2017.00747 https://www.ncbi.nlm.nih.gov/pubmed/28559902 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433298

Fernández C., Hervás D., Rivas-Sendra A., Marín M., Seguí-Simarro J. 2018. Comparison of six diferent methods to calculate cell densities. Plant Methods. 14(1): 1–15. https://doi.org/10.1186/s13007-018-0297-4 https://www.ncbi.nlm.nih.gov/pubmed/29686723 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5901878

Handbook for practical classes in microbiology. 1995. Ed. N.S. Egorova. Moscow: Moscow State Univ. Press. 224 с.

Lu I.-F., Ming-Shiuan S., Tse-Min L. 2006. Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar. Biol. 1: 1–15. https://doi.org/10.1007/s00227-006-0323-3

Petrenko S.A., Gorokhova N.A., Sandomirsky B.P., Petrenko A.Y. 2005. Determination of the metabolic activity of freshly isolated and cryopreserved human embryonic liver cells using Alamar Blue-test. Probl. Cryobiol. Cryomed. 4(15): 600–606.

Prilepsky A.Yu, Drozdov A.S., Bogatyrev V.A., Staroverov S.А. 2019. Methods of working with cell cultures and determination of toxicity of nanomaterials. St. Petersburg: ITMO Univ. 43 p.

Ramaraj S., Niran J. 2013. Modified medium for enhanced growth of Dunaliella strains. Int. J. Curr. Sci. 5: 67–73.

Rampersad S.N. 2012. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 12: 12347–12360. https://doi.org/10.3390/s120912347 https://www.ncbi.nlm.nih.gov/pubmed/23112716 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478843

Ryzhik I.V. 2013. Assessment of metabolic activity of fucus algae by tetrazolium method. Algologia. 1(23): 10–18. https://doi.org/10.15407/alg23.01.010

Schrader K., Harries М. 2006. A rapid bioassay for bactericides against the catfish pathogens Edwardsiella ictaluri and Flavobacterium columnare. Aquacult. Res. 37: 928–937. https://doi.org/10.1111/j.1365–2109.2006.01514.x

Shimomura Y., Ohno R., Kawai F., Kimbara K. 2006. Method for Assessment of Viability and Morphological Changes of Bacteria in the Early Stage of Colony Formation on a Simulated Natural Environment. Appl. Environ. Microbiol. 72(7): 5037–5042. https://doi.org/10.1128/AEM.00106-06 https://www.ncbi.nlm.nih.gov/pubmed/16820503 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489298

Stockert J., Horobin R., Colombo L., Blázquez-Castro A. 2018. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 3(120): 159–167. https://doi.org/10.1016/j.acthis.2018.02.005 https://www.ncbi.nlm.nih.gov/pubmed/29496266

Tafreshi А., Shariati М. 2009. Dunaliella biotechnology: methods and applications. J. Appl. Microbiol. 107: 14–35. https://doi.org/10.1111/j.1365–2672.2009.04153.x https://www.ncbi.nlm.nih.gov/pubmed/19245408

Xu M., McCanna D.J., Sivak J.C. 2015. Use of the viability reagent Presto Blue in comparison with Аlamar Blue and MTT to assess the viability of human corneal epithelial cells. J. Pharm. Toxicol. Methods. 71: 1–7. https://doi.org/10.1016/j.vascn.2014.11.003 https://www.ncbi.nlm.nih.gov/pubmed/25464019

Yuana J., Chenb F., Liua X., Zhen X. 2002. Carotenoid composition in the green microalga Chlorococcum. Food Chem. 76: 319–325. https://doi.org/10.1016/S0308-8146(01)00279-5

Citation

Chernobai N.A., Vozovik K.D., Kadnikova N.G. 2021. Comparative analysis of methods for assessing the safety of Dunaliella salina Teodoresco and Chlorococcum dissectum Korshikov (Chlorophyta) microalgae cultures after exposure to stress factors. Algologia. 31(4): 353–364. https://doi.org/10.15407/alg31.04.353