ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 7 of 7
Up
Algologia 2021, 31(4): 390–405
https://doi.org/10.15407/alg31.04.390
Applied Algology

Some strains from microalgae collection IBASU-A (Ukraine) as an object of biotechnology

Borysova O.V., Tsarenko P.M.
Abstract

An information on the collection of strains of biotechnological application as an integral part of Microalgal Culture Collection of the M.G. Kholodny Institute of Botany of NAS of Ukraine (IBASU-A) is given. The base of its funds contains some green algal strains belonging to the families of Dunaliellaceae, Chlorellaceae, Scenedesmaceae and Selenastraceae. They have been isolated from different regions of Ukraine in order to find cultures of phototrophic microorganisms – promising for biotechnology, in particular, obtaining biologically active additives for the needs of the food industry, medicine, agriculture, raw materials for the production of biofuels, as well as bioindication, biomonitoring, bioremediation of aquatic objects of the environment, etc. Overall, this special collection includs 90 strains of halophile and freshwater microalgae of 30 species, 15 genera, 7 families, 4 orders, 2 classes. All of them are considered as important objects for industrial cultivation, solution of environmental problems, and the basis for further biotechnological research.

Keywords: IBASU-A-collection, microalgae, strains, biotechnology, biofuel, bioremediation, bacterial consorts

Full text: PDF (Rus) 323K

References
  1. Algal culturing techniques. 2005. Ed. R.A. Andersen. Amsterdam: Elsevier Acad. Press. 578 p.
  2. Apt K.E., Behrens P.W. 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35: 215–226. https://doi.org/10.1046/j.1529-8817.1999.3520215.x
  3. Becker E.W. 2007. Microalgae as a source of protein. Biotechnol. Adv. 25: 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002 https://www.ncbi.nlm.nih.gov/pubmed/17196357
  4. Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 6318: 1–95.
  5. Bogen C., Klassen V., Wichmann J., La Russa M., Doebbe A., Grundmann M., Uronen P., Kruse O., Mussgnug J.H. 2013. Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Biores. Technol. 133: 622–626. https://doi.org/10.1016/j.biortech.2013.01.164 https://www.ncbi.nlm.nih.gov/pubmed/23453981
  6. Borisova E.V., Tsarenko P.M. 2004. Microalgae Culture Collection of Ukraine (IBASU-A). Nova Hedw. 79(1-2): 127–134. https://doi.org/10.1127/0029-5035/2004/0079-0127
  7. Borisova E.V., Nogina T.M., Stupina V.V. 2000. Bacteria accompanying Scenedesmus acutus Meyen in laboratory cultures. Int. J. Algae. 2(2): 113–121. https://doi.org/10.1615/InterJAlgae.v2.i2.110
  8. Borowitzka M.A., Borowitzka L.J. 1988. Microalgal Biotechnology. Cambridge: Cambridge Univ. Press. 477 p.
  9. Borysova O.V., Tsarenko P.M., Konіshchuk M.O. 2014. Microalgae Culture Collection IBASU-A. Kyiv. 110 p. [Борисова О.В., Царенко П.М., Коніщук О.М. 2014. Колекція культур мікроводоростей IBASU-A. Київ. 110 с.].
  10. Borysova O.V., Tsarenko P.M., Konіshchuk M.O. 2016. Microalgae Culture Collection (IBASU-A) as an object of national heritage of Ukraine. Ukr. Bot. J. 73(5): 453–466. [Борисова О.В., Царенко П.М., Коніщук М.О. 2016. Колекція культур мікроводоростей (IBASU-A) як об'єкт національного надбання України. Укр. бот. журн. 73(5): 453–466]. https://doi.org/10.15407/ukrbotj73.05.453
  11. Diaz G.C., Cruz Y.R., Carlis R.G., de Paula R.C.V., Aranda D.A.G., Dario M.A.G., Marassi G.S., Furtado N.C. 2015. Cultivation of microalgae Monoraphidium sp., in the plant pilot the Grant Valle Bio Energy, for biodiesel production. Nat. Sci. 7: 370–378. https://doi.org/10.4236/ns.2015.77040
  12. Fawzy M.A., Hifney A.F., Issa A.A., Adam M.S. 2014. Asteromonas gracilis (Prasinophyceae) as a model for production of carotene and total lipids. J. Adv. Res. Appl. Sci. 1(1): 51–62.
  13. Jacobs-Lopes E., Merinda L.G.R., Quelirouz M.I., Zepka L.Q. 2015. Microalgal Biorefineries. https://doi.org/10.5772/59969
  14. Kirpenko N.I., Tsarenko P.M., Usenko O.M., Leontieva T.O. 2021. Green microalgae Monoraphidium sp. HPDP-105 - producer of biomass with high lipid content. Hydrobiol. J. 57(4): 88–98. [Кірпенко Н.І., Царенко П.М., Усенко О.М., Леонтьєва Т.О. 2021. Штам зеленої мікроводорості Monoraphidium sp. HPDP-105 - продуцент біологічно цінних сполук. Гідробіол. журн. 57(4): 88–98]. https://doi.org/10.1615/HydrobJ.v57.i6.70
  15. Kondratyeva N.V., Tsarenko P.M., Kislova O.A. 2010. Algological studies in the M.G. Kholodny Institute of Botany NAS of Ukraine. Kyiv. 144 p. [Кондратьєва Н.В., Царенко П.М., Кислова О.А. 2010. Альгологічні дослідження в Інституті ботаніки ім. М.Г. Холодного. Київ. 144 c.].
  16. Kvitko K.V., Borshchevskaya T.N., Chunaev A.S., Tugarinov V.V. 1983. In: Cultivation of algal collection strain. Leningrad: Leningrad State Univ. Publ. Pp. 28–56. [Квитко К.В., Борщевская Т.Н., Чунаев А.С., Тугаринов В.В. 1983. Петергофская коллекция штаммов водорослей. В кн.: Культивирование коллекционных штаммов водорослей. Л.: Изд-во ЛГУ. C. 28–56]. https://doi.org/10.2307/2392385
  17. Lenova L.I., Stupina V.V. 1990. Use of algae in final sewage purification. Kyiv: Nauk. Dumka. 180 p. [Ленова Л.И., Ступина В.В. 1990. Водоросли в доочистке сточных вод. Киев: Наук. думка. 180 с.].
  18. Lenova L.I., Stupina V.V., Trenkinshu R.P. 1987. Comparative analysis of growth and productivity of certain halophilous algae in intensive cultivation. Ukr. Bot. J. 44(6): 54–57. [Лєнова Л.Й., Ступина В.В., Тренкеншу Р.П. 1987. Порівняльний аналіз росту та продуктивності деяких галофільних водоростей в інтенсивній культурі. Укр. бот. журн. 44(6): 54–57].
  19. Li D., Zhao Y., Ding W., Zhao P., Xu J.-W., Li T., Ma H., Yu X. 2017. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatoin and photoinduction. Biores. Technol. 23: 104–112. https://doi.org/10.1016/j.biortech.2017.03.114 https://www.ncbi.nlm.nih.gov/pubmed/28365337
  20. Lilitska G.G. 2019. Identification manual of phytomonads algae of Ukraine. Kyiv. 456 p. [Ліліцька Г.Г. 2019. Визначник фітомонадних водоростей України. Київ. 456 с.].
  21. Massjuk N.P. 1973. Morphology, systematics, ecology, geographical distribution of the genus Dunaliella Teod. and perspectives of its applications. Kyiv: Nauk. Dumka. 244 p. [Масюк Н.П. 1973. Морфология, систематика, экология, географическое распространение рода Dunaliella Teod. и перспективы его практического использования. Киев: Наук. думка. 244 с.].
  22. Mata T.M., Martins A.A., Caetano N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust., Energ. Rev. 14: 217–232. https://doi.org/10.1016/j.rser.2009.07.020
  23. Muzafarov A.M., Taubaev T.T. 1984. Cultivation and application of microalgae. Tashkent: FAN. 137 p. [Музафаров А.М., Таубаев Т.Т. 1984. Культивирование и применение микроводорослей. Ташкент: ФАН. 137 с.].
  24. Nascimento I.A., Marques S.S.I., Cabanelas I.T.D., Pereira S.A., Druzian J.I., de Souza C.O., Vich D.V., de Carvalho G.C., Nascimento M.A. 2013. Screening microalgae strain for biodiesel production and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg. Res. 6: 1–13. https://doi.org/10.1007/s12155-012-9222-2
  25. Patidar S.K., Mitra M., Soundarya R., Mishra S. 2014. Potential Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode. Bioresour. Technol. 172: 32–40. https://doi.org/10.1016/j.biortech.2014.08.070 https://www.ncbi.nlm.nih.gov/pubmed/25233474
  26. Soeder J., Hegewald E. 1988. Scenedesmus. In: Microalgal Biotechnology. Cambridge: Cambridge Univ. Press. Pp. 58–84.
  27. Sorochinsky B., Blume Ya., Sozinov O. 2010. Liquid Biofuels: current state and tendencies. Kyiv: DIA. 116 p. [Сорочинський Б.В., Блюм Я.Б., Созінов О.О. 2010. Рідкі біопалива: сучасний стан та тенденції. Київ: ДІА. 116 с.].
  28. Spolaore P., Joannis-Cassan C., Duran S., Isabert A. 2006. Commercial applications of microalgae. J. Biosci. Bioenerg. 101(2): 87–96. https://doi.org/10.1263/jbb.101.87 https://www.ncbi.nlm.nih.gov/pubmed/16569602
  29. Suzuki S., Yamaguchi N., Nakajima N., Kawachi M. 2018. Raphidocelis subcapitata (= Pseudo-kirchneriella subcapitata) provides an insight into genome evolution and environmental adaptation in the Sphaeropleales. Sci. Rep. 8(1): 8058. https://doi.org/10.1038/s41598-018-26331-6 https://www.ncbi.nlm.nih.gov/pubmed/29795299 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966456
  30. Tsarenko P.M., Borysova O.V., Blume Ya.B. 2011. Microalgae as bioenergetic object: IBASU-A collection species - perspective producers of biomass as the source of raw stuff for biofuel. Visn. Nat. Acad. Sci. Ukraine. 5: 49–54. [Царенко П.М., Борисова О.В., Блюм Я.Б. 2011. Мікроводорості як об'єкт біоенергетики. Види колекції IBASU-A - перспективні продуценти біомаси як джерела сировини для біопалива. Вісн. НАН України. 5: 49–54].
  31. Tsarenko P., Borysova O., Blume Ya. 2016. High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A (Ukraine). Oceanol. Hydrobiol. Stud. 45(1): 79–85. https://doi.org/10.1515/ohs-2016-0008
  32. Tsarenko P.M., Borysova O.V., Konishchuk M.O., Biolous O.P. 2014. Algal strain Acutodesmus dvoformnyi (Acutodesmus dimorphus (Turpin) P.Tsarenko) - bioresource producer. Pat. Ukr. no 95400. 6 p. [Царенко П.М., Конищук М.О., Борисова О.В., Білоус О.П. 2014. Штам водорості Акутодесмус двоформний (Acutodesmus dimorphus (Turpin) P.Tsarenko) - біоресурсний продуцент. Пат. України. № 95400. 6 с.].
  33. Tsarenko P.M., Borysova O.V., Korkhovyi V.I., Blume Ya.B. 2020. High-efficiency Ukrainian strains of microalgae for biodiesel fuel production (Overview). Open Agricult. J. 14: 209–218. https://doi.org/10.2174/1874331502014010209
  34. Tsarenko P.M., Konishchuk M.O., Korkhovoy V.I., Kostikov I.Yu., Blume Ya.B. 2017. Fatty acid composition of cocoid green algae as a basis for energy and primary products potential. Algologia. 27(4): 382–402. [Царенко П.М., Конищук М.А., Корховой В.И., Костиков И.Ю. Блюм Я.Б. 2017. Жирнокислотный состав коккоидных зеленых водорослей как основа их энергосырьевого потенциала. 1. Chlorella- и Acutodesmus-подобные микро-водоросли (Chlorophyta). Альгология. 27(4): 382–402]. https://doi.org/10.15407/alg27.04.382
  35. Wolf L., Cummings T., Wüller K., Reppke M., Volkmar M., Weuster-Botz D. 2021. Production of β-carotene with Dunaliella salina CCAP19/18 at physically simulated outdoor conditions. Eng. Life Sci. 21: 115–125. https://doi.org/10.1002/elsc.202000044 https://www.ncbi.nlm.nih.gov/pubmed/33716611 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923581
  36. Wu L., Xu L., Hu C. 2015. Screening and characterization of oleaginous microalgal species from Northern Xinjiang. J. Microbiol. Biotechnol. 25(6): 910–917. https://doi.org/10.4014/jmb.1411.11075 https://www.ncbi.nlm.nih.gov/pubmed/25639722
  37. Yu X., Zhao P., He C., Li J., Tang X., Zhou J., Huang Z., Zhou J., Huang Z. 2012. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Biores. Technol. 121: 256–262. https://doi.org/10.1016/j.biortech.2012.07.002 https://www.ncbi.nlm.nih.gov/pubmed/22858494
  38. Zolotaryova O.K., Schnyukova E.L. Sivash O.O., Mykhailenko N.F. 2008. Perspectives for applications of microalgae in biotechnology. Kyiv: Alterpress. 234 p. [Золотарьова О.К., Шнюкова Є.І., Сиваш О.О., Михайленко Н.Ф. 2008. Перспективи використання водоростей у біотехнології. Київ: Альтерпрес. 234 с.].