Introduction

The algological studies of the water basins in the East Siberia mainly concern large rivers such as Ob’ River and its tributaries (Kuksn, 1972; Safonova, 1972; Naumenko, 1995; Bogdanov et al., 2002; Semenova, 2009) and Irtysh River (Yurova, 1974; Naumenko, 1986; Porkhacheva, 1986; Bazhenova, 2005). It is also known several publications on the diatoms (Bacillariophyta) of these rivers (Levadnaya, Safonova, 1972; Genkal, Semenova, 1989, 1999; Naumenko, 1995). Much less data exists on the algal flora of numerous small ponds and streams in the East Siberia where only flood-lands and sorovye basins of the large rivers have been investigated so far (Popova, 1964; Levadnaya, Safonova, 1972; Naumenko, 1986, 1988; Porkhacheva, 1986; Belyakov et al., 2001; Stanislavskaya, 2004; Valeeva, 2009).

Recently the geoeccological studies of several small lakes in the central part of East Siberia were carried out. These lakes are located on the Tazov peninsula within the Konda River basin — 70 km south-east of city Hanty-Mansiysk (Kuzin, Yakovlev, 2011).

Materials and Methods

Algal composition of the algal-bacterial mats from two lakes with conventional numbers N 29 and N 73 is studied (the data of Stanislavskaya in Kuzin, Yakovlev, 2011). The algal-bacterial mats are specific communities of benthic...
algae and bacteria habit on the littoral sand. They create somewhat friable macrocoverings about 1-2 cm thickness olive-green or blue-green in color.

Both lakes have roundish shape with 1.0–1.5 km diameter, 2-3.5 average depth (maximum — 5.0), under spreading bed with feldspar-quartz sands. Because these lakes do not have any artificial sources of pollution their water is naturally clean and colourless, has high transparency and belongs to low salinity type of hydrocarbon-sodium waters (Kuzin, Yakovlev, 2011).

Qualitative samples of the algal-bacterial mats were collected from the littoral sand at the depth 0.3–1.0 in the middle of July 2010. Samples were fixed with 40 % formalin. For diatom identification they were cleaned from an organic matter by standard cold method with concentrate sulfuric acid (Krishtofovich, Proshkina-Lavrenko, 1949). Permanent slides were mounted using high-refractive index resign Naphrax® (R.I. = 1.7). For scanning electron microscopy (SEM) examination cleaned and dried diatom material from the samples were coated with gold on 10 mm diameter stubs a JFC-1100 for 5 min.

Equipment includes light microscope Biolar PZO (Poland) with photo camera T100 Scienelab 10.0MPI, China; scanning electron microscope JEOL 6060LA, Japan.

Results and Discussion

Preliminary investigation showed low algal species richness in observed lakes: 11 species were found in lake N 29 and only 8 species — in lake N 73 (the data by Stanislavskaya in Kuzin, Yakovlev, 2011). Further study of Bacillario phyta revealed in both lakes 37 species together with the new one for science. *Psammothidium vernadskyi* sp. nov. Figs 1, 1a-c — holotypus, designed here; 2–8a — paratypi, designed here.

Diagnosis. Morphometric data: length 26–30 µm, width 10–12 µm, L/W ratio 2.5–2.6; striae density 25–29 in 10 µm.

Frustule is slightly bent to the rapheless valve (RLV), heterovalvatity² = 3 (valve curvature, raphe presence/absence, shape of the central hyaline areas). Valves linear-elliptical with somewhat narrowed broadly rounded poles (Figs 1, 2, 3-6), raphe valve (RV) almost flat, RLV slightly concave and the mantles both of them are bent under the right angle (Figs 1c, 2a). Central hyaline area on the RV rectangle or bow-like, asymmetrically placed, almost reaches the mantle (Figs 1c, 3-5); on the RLV — rhombic or round, asymmetrically placed, occupies ½ of valve width (Figs 2, 2a, 6). Striae are weakly radiate without interruption on the mantle. Areolae poroid, foramina small, transapically oval (Figs 1a-c, 2a, 8a). Velum of hymen type has two rows of fine round openings (Fig. 8b, arrow). Raphe system situates on diagonal, on outside surface consists from two filiform slits that accompanied by grooves and thin ribs (Fig. 1c), with long curved distal slits turned to the opposite directions on the mantle (Figs 1a, 1b).

² Heterovalvatity — number of features that differs two valves in one frustule (Bukhtiyarova, 2006).
Diagnostic features of *Psammothidium vernadskyi* sp. nov.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Length</th>
<th>Width</th>
<th>Length/width ratio</th>
<th>Striae density in 10 µm</th>
<th>Striae direction</th>
<th>Areolae foramen form</th>
<th>Frustule heterovalvate</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. vernadskyi</td>
<td>26-30</td>
<td>10-12</td>
<td>2.5-2.6</td>
<td>25-29</td>
<td>radial</td>
<td>trans-apically oval</td>
<td>3</td>
</tr>
<tr>
<td>P. helveticum (Hust.) Bukht. et F.E.Round</td>
<td>22-5(3)</td>
<td>7-9(3)</td>
<td>2.7-3.1 (1.4-3.7(3))</td>
<td>24-27(2)</td>
<td>23-28(1)</td>
<td>24-30(4)</td>
<td></td>
</tr>
<tr>
<td>P. bioretii (Germain) Bukht. et F.E.Round</td>
<td>10-30(1)</td>
<td>5-10(1)</td>
<td>2.0-3.0</td>
<td>22-28(1)</td>
<td>round</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P. atalanta (Carter) Bukht. comb. nov.</td>
<td>12-20(3)</td>
<td>5-6(3)</td>
<td>2.4-3.3</td>
<td>26(3)</td>
<td>UN</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Empty cage shows that feature meaning is the same as in *P. vernadskyi*. (1) — The data according Krammer, Lange-Bertalot, 1991; (2) — our calculation from Pl. 220, figs 1-9 — type material, in Simonsen, 1987; (3) — Carter, 1966; (4) — Potapova, 2010b. UN — unknown feature; S = 21 — sum of the features, involved in comparison, including overlapping morphometric data.

Диагноз. Морфометрические данные: дл. 26–30 мкм, шир. 10–12 мкм, отношение Д/Ш — 2.5–2.6; 25–29 штрихов в 10 мкм.

Панцирь слегка согнут к бесшовной створке (RLV), гетеровальварность³ = 3 (изогнутость створки, присутствие/отсутствие шва, форма центральных гиалиновых полей). Створки линейно-эллиптические с несколько суженными широкозакругленными концами (Figs 1, 2, 3–6),

³ Гетеровальварность — количество признаков, по которым различаются две створки в одном панцире (Bukhtiyarova, 2006).
Psammothidium vernadskyi sp. nov.

<table>
<thead>
<tr>
<th>Valve outline</th>
<th>RV surface</th>
<th>RLV surface</th>
<th>Raphe system on the outside valve surface</th>
<th>N of common features (relative similarity in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear-oval</td>
<td>rectangle bow-like / flat</td>
<td>Rhombic or round / almost reaches mantle</td>
<td>diagonal / thin ribs / curved long</td>
<td>S = 21</td>
</tr>
<tr>
<td></td>
<td>2/3 valve width / axial</td>
<td>16 (76%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undulate</td>
<td>bow-like</td>
<td>drop-like / mantle</td>
<td>11 (53%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>½ valve width / axial</td>
<td>7 (~37%, with UN till 67%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td>apically oval / UN</td>
<td>UN / UN</td>
<td>UN / UN</td>
<td></td>
</tr>
</tbody>
</table>

In compare with morphologically similar species

Шовная створка (RV) почти плоская, RLV слегка вогнутая, загибы обеих створок согнуты под прямым углом (Figs 1с, 2b). Центральное гиалиновое поле RV прямоугольное или бантиковидное, асимметрично расположено, почти достигает загиба (Figs 1с, 3−5); RLV — ромбовидное или округлое, асимметрично расположено, занимает ½ ширины створки (Figs 2, 2а, 6). ШТРИХИ слегка радиальные, непрерывные на загибе створки. АРЕОЛЫ пороидные, мелкие, с транс-апикально овальными фораменами (Figs 1а−с, 2а, 8а). ВЕЛУМ типа гимен имеет два ряда мелких круглых отверстий (Fig. 8b). ШВОВНАЯ СИСТЕМА расположена диагонально, на ВНЕШНЕЙ ПОВЕРХНОСТИ состоит из двух нитевидных щелей, сопровождающихся тонкими ребрами (Figs 1а−с); с длинными изогнутыми дистальными щелями, повернутыми в противоположные стороны на загибе (Fig. 1а, b); центральные поры шва сопровождаются ложбинками и тонкими ребрами, расположены на расстоянии 7−8 штрихов (Fig. 1с).

ISSN 0868-8540. Альгология. 2013. Т. 23. № 1
Figs 1, 1a-c. Holotypus designed here – a set of the microphotos from single specimen of *Psammothidium vernadskyi* Bukht. et Stanislavskaya sp. nov. with its enlarged fragments: 1 – raphe valve, outside view; 1a-c – the fragments of the same valve. 1a,b – valve poles with long curved terminal raphe slits, turned to the opposite sides on the mantle; 1c – asymmetrical rectangular hyaline central area and raphe, accompanied by thin ribs. SEM. Scale: 1 – 5 µm, 1a-c – 1 µm
Figs 2—7b. The paratypi designed here — 7 speciemens of *Psammothidium vernadskyi* Bukht. et Stanislavskaya sp. nov. and/or their fragments taken from the type material. 2 — Rapheless valve, outside view; 2a — the fragment of rapheless valve with rhombic central hyaline area, 3—5 — the raphe valves, 6 — rapheless valve; 7a,b — the fragments of raphe valve from inside surface, 7a — raphe end with little helictoglossa, 7b — central area with central raphe pores, turned to the opposite sides. Figs 2, 2a, 7b — SEM, 3—6 — LM. Scale: 2 — 5 µm, 3—6 — 10 µm, 2a, 7a,b — 1 µm
Figs 8a, 8b. Continuation for designed here paratypi of *Psammothidium vernadskyi* Bukht. et Stanislavskaya sp. nov. from the type material. 8a — fragment of rapheless valve with transapically oval areola, 8b — enlarged fragment with hymen velum, completed with two rows of round openings — arrow. Fig. 9 — *P. bioretti* (Germain) Bukht. et F.E. Round — half of RV from outside surface, scanned picture N 27 from Bukhtiyarova, Round, 1996. Fig. 10 — *P. helveticum* (Hust.) Bukht. et F.E. Round — RV from outside surface, 2/3 of Fig. 8 from Potapova (2010b). Figs 11–14 — *P. atalanta* (Carter) Bukht. comb. nov. 11, 12 — original scanned pictures of Figs 15, 16 from Carter, 1966; 13, 14 — both valves from single exemplar, type material, scanned pictures of Taf. 19, Figs 25, 25’ from Lange-Bertalot, Krammer, 1989. 11, 13 — raphe valves, 12, 14 — rapheless valves. Figs 8a, 8b — TEM, Figs 9, 10 — SEM, Figs 11–14 — LM. Scale: 8a — 1 µm, 8b — 0,2 µm, 9 — 2 µm, 10 — 4 µm; 11–14 — 10 µm
Діагноз. Морфометричні дані: довж. 26—30 µm, шир. 10—12 µm, відношення Д/Ш = 2.5—2.6; у 10 µm 25—29 рисок.

Панцир злегка зігнутий у бік безшовної стулки (RLV), гетеровальварність дорівнює 3 (зігнутість стулки, наявність/відсутність шва, форма центральних гіалинових полів). Стулки лінійно еліптичні з дещо звуженими широко закругленими кінцями (Figs 1, 2, 3−6), шовна стулка (RV) майже плоска, RLV злегка увігнута, загини обох зігнути під прямим кутом (Figs 1c, 2a).

Центральне гіалинове поле RV прямокутне або бангтіноподібне, асиметрично розташоване, майже сягає загині під прямим кутом з одним швом (Figs 1c, 2a). Риски злегка радіальні, безперервні на загині стулки. Ареоли пороїдні, малі, з транспапікальними фораменами (Figs 1a−c, 2a, 8a). Велум гімен типу має два ряди малих круглих отворів (Fig 8b, arrow). Шовна система розташована діагонально, на зовнішній поверхні складається із двох ниткоподібних щілин, супроводжується ривочками і тонкими ребрами (Fig 1a−c), з довгими зігнутими дистальними щілинами, поверненими у протилежні боки на загині стулки (Fig 1a, b); центральні пори шва супроводжуються тонкими ребрами, розташовані на відстані 7−8 рисок (Fig 1c).

Type locality and biotope. Longitude: 66°42’02”, Latitude: 77°01’48”.
Russia, East Siberia, Khanty-Mansiyskiy region, Sogom-Endyrskiy district, Tazov peninsula within the R. Konda basin —70 km south-east of city Hanty-Mansiysk, Blue Lake N 29, algae-bacterial mats.

Type material: T-Bukht-3, collected by I.L. Kuzin, includes 2 permanent slides and preserved sample in collection of L. Bukhtiyarova; T-ESanislav-I — permanent slide and rude material in Collection of E. Stanislavskaya; permanent slide N ZU8/67 in Friedrich Hustedt Collection. Alfred-Wegener-Institute für Polar- und Meeresforschung, Bremerhaven, Germany.

Etymology. The species is named in honor of an Academician V.I. Vernadsky who elaborated the concept of the biosphere and its ecological architecture and believed that the diatoms having siliceous cell shalls is one of the most important component of the Earth Life.

Ecology and distribution. P. vernadskyi is only known from type locality that characterized by naturally clean, colorless fresh water with high transparency and belonging to the low salinity type of hydrocarbon-sodium waters. In type locality new species amounts about 1 % within diatom community.

Observation and comparison with morphologically similar species. The thin hymens in most areolae were destroyed, probably, for the samples treatment. Nevertheless, a few areolae have kept velum (Fig. 8b, arrow) that consists two rows of fine round openings.

Several species are similar with P. vernadskyi in valve outline and size range, striae arrangement and raphe construction on the outside valve surface that is shown in the comparable Table. More than half morphological features coincide with well investigated Psammothidium bioretii (Germain) Bukht. et F.E. Round and Psammothidium helveticum (Hust.) Bukht. et F.E. Round. Psammothidium atalanta (Carter) Bukht. comb. nov. was not yet investigated.
with EM therefore uncompleted data on its fine morphology does not allow to make a proper conclusion on its similarity with new species. *Psammothidium vernadskyi* distinguishes from *P. helveticum* (Taf. 220, Figs 1-9 in Simonsen (1987); Fig. 20 in Bukhtiyarova and Round (1996); Fig. 8 (here Fig. 10 – 2/3 part) in Potapova (2010b) — in size and position of central hyaline area on RLV, in position of central hyaline area on RV; diagonal raphe position; from *P. bioretii* (Fig. 27 (here Fig. 9) in Bukhtiyarova, Round (1996), fig. 9 in Potapova (2010a) on heterovalvate is 3, flat RV, shape and size of central hyaline areas on both valves, transapically oval areolae foramina, long raphe distal ends curved on the mantle; from *P. atalanta* (Figs 15, 16 (here Figs 11, 12), 19–20 in Carter, 1966; Taf. 19, 21–24, Taf. 19, Figs 25, 25’ (here Figs 13, 14) in Lange-Bertalot, Krammer, 1989) — on heterovalvate is 3, shape, size and position of central hyaline areas on the both valves.

The arrangement of illustrations for our new species is based on the principle definition of the *nomenclature type* that is a herbarium exemplar of species or detailed picture of plant on the base of which new species was described and to which species name is connected. In case of *Bacillariophyta* that are microalgae and cannot be visible without microscopic equipment, the Art. 37.5. of ICBN (McNeill et al., 2006) acts and it tells: “... the type of a name of a new species or infraspecific taxon of microscopic algae ... may be an effectively published illustration if there are technical difficulties of preservation or if it is impossible to preserve a specimen that would show the features attributed to the taxon by the author of the name” (our underlining). Today techniques for the diatoms investigation do not allow to extract from or keep on SEM stub single exemplar of species that served for description of taxonomically valuable features included to the protolog. In the same time, an effectively published microphotos have themselves a high documenting and preservation.

For definite and fast orientation in represented illustrations we also follow to earlier suggestion about putting of holotype microphoto together with all its enlarged fragments on the framed table with letter T=H, that means *Holotypus* (Bukhtiyarova, 2000, 2001, 2004). Because our new species has heterovalvate frustule, RLV has different structure and view in the microscope, than chosen as holotype RV, and is not a *dublicate* (or copy) of RV structure. The same logic concerns the microphotos of LM, the inside surface fragments and TEM microphotos. Therefore we named all those microphotos as *paratypes*, not as *isotypes* that represent the dubicates of species from type material. Then, species type (=holotype) here designed as framed plate, marked H, with SEM microphotos of a single valve and its engaged fragments. Similarly, we designed here a set of other necessary illustrations, served for species diagnose, on framed plate marked by letters PT that means *Paratypi* and that those pictures were gotten from several exemplars of type material. Thus, our chose of holotype and paratipes for the new species *Psammothidium vernadskyi* is in complete agreement both with general concept of the type and its applying for microalgae according ICBN.
Psammothidium atalanta (Carter) Bukht. comb. nov.

Lange-Bertalot, Krammer, 1989: Taf. 19, Figs 21-24, Figs 25, 25’ (here Figs 13, 14) — from the type material.
For present A. atalanta is included to the synonyms of A. helvetica (Hust.) Lange-Ber. (Krammer, Lange-Bertalot, 1991) sin. of Psammothidium helveticum (Hust.) Bukht. et F.E. Round. However, A. atalanta differs from later taxon by: a) heterovalvate is 2 (valve curvature, raphe presence/absence); b) uniform apically oval central hyaline areas on the both valves that occupy ½ of the valve width. Those features prove the status of independent species we renew to this taxon.

Conclusions

The description of the new species Psammothidium vernadskyi within the genus Psammothidium Bukht. et F.E. Round is based on a set of its ultramorphological features of the genus rank according Bukhtiyarova and Round (1996), Bukhtiyarova (2007): frustule curvature towards rapheless valve, length:breadth ratio − 2,5; uniserial with uniform density striae, poroid areolae with hymen velum and the most common for the monorafid diatoms filiform raphe system on inside valve surface — with raphe pores at central nodule, bent to the opposite directions (Fig. 7b), and small helictoglossa (Fig. 7a). The new species, like the other Psammothidium species, occurs in the fresh waters. A set of distinct ultramorphological features of species rank clear separate Psammothidium vernadskyi from morphologically similar P. atalanta, P. bioretii and P. helveticum.

The authors are thankful very much to an Academician of NAS of Ukraine Prof. S.L. Mosyakin for the consultation on typification of a new species, to our respected Reviewer for careful work with the manuscript and the valuable remarks, to operator of SEM V.I. Sapsie for his kind and qualified help in taking microphotos, to Dr. N. Scherbatyiuk for assistance on taking of TEM microphotos, to Dr. A. Rusanov for English correction.

REFERENCES

Bukhtiyarova L.N. To species and infraspecific typification of Bacillariophyta / 18th Int. Diatom Symp. (MiedzdyZdroje, Poland, 2–7 Sept., 2004). – P. 104.

Bukhtiyarova L.N. Additional data on the diatom genus Karayevia and a proposal to reject the genus Kolheisia // Nova Hedw. – 2006. – V. 130, Beih. – P. 85–96.

Bukhtiyarova L.N. To the revision of genus Achnanthes Bory s. lato (Bacillariophyta). II. New monoraphid genera and the kye to their identification // Algologia. – 2007. – 17, N 4. – P. 112–122.

Kuzin I.L. Yakovlev O.N. The “Blue” lakes of West Siberia. – St-Petersburg: Nasledie, 2011. – 57 p. (in Rus.)

Psammothidium vernadskyi sp. nov.

Stanislavskaya E.V. Phytoplankton of small basins of the Central part of East Siberia // The biological recourses and nature management. – Surgut, 2004. – V. 7. – P. 35–51. (in Rus.)

Received 19 September 2012
Submitted by S.P. Wasser

Л.Н. Бухтиярова¹, Е.В. Станиславская²
¹ Ин-т ботаники им. Н.Г. Холодного НАН Украины, ул. Терещенковская, 2, 01601 Киев, Украина
² Ин-т лимнологии РАН, ул. Севастынова, 9, 196105 Санкт-Петербург, Россия

Psammothidium vernadskyi sp. nov. (Bacillariophyta) из голубого озера, Западная Сибирь, Россия

Исследован видовой состав Bacillariophyta двух малых озер Западной Сибири. В одном из них обнаружен новый для науки вид Psammothidium vernadskyi Bukht. et Stanislavskaya sp. nov. Представлен диагноз, иллюстрации и другие необходимые данные, сопровождающие описание нового вида. Обсуждается видовая и внутривидовая типификация Bacillariophyta.

Ключевые слова: новый вид, морфология, таксономия, номенклатурный тип, гологипп, паратип, типификация видов Bacillariophyta, малые озера, альгобактериальные маты.