ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 2 of 8
Up
Algologia 2017, 27(1): 15–21
https://doi.org/10.15407/alg27.01.015
Physiology, Biochemistry, Biophysics

Effect of nitrogen on the accumulation of fucoxanthin from diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin.

Ryabushko V.I., Zheleznova S.N., Nekhoroshev M.V.
Abstract

The effect of inorganic nitrogen content in the culture medium on accumulation of fucoxanthin (Fc) in the diatom Cylindrotheca closterium was studied. The Fc content in the biomass of the microalgae is determined in the transition to the stationary growth phase. Increase of the concentration of nitrogen in the medium F/2 promotes accumulation of fucoxanthin in the culture. With the concentration of sodium nitrate 225–300 mg · L-1 in the medium, the concentration of fucoxanthin in dry biomass of C. closterium is found to reach 15 mg · g-1. The maximum cell concentration is above 2·106 cells · mL-1 and the average specific growth rate is 0.21 day-1. Use of nutrient medium with high concentration of nitrogen allows obtaining the culture of C. closterium enriched with the biologically active substance fucoxanthin. Consequently, the diatom Cylindrotheca closterium can be regarded as a promising object in biotechnology.

Keywords: Cylindrotheca closterium, cultivation, nitrogen, fucoxanthin

Full text: PDF 194K

References
  1. Affan A., Heo S-.J., Jeon Y-.J., and Lee J.-B., J. Phycol., 2009, 45: 1405–1415. https://doi.org/10.1111/j.1529-8817.2009.00763.x https://www.ncbi.nlm.nih.gov/pubmed/27032598
  2. Gulllard R.R. and Ryther J.H., Can. J. Microbiol., 1963, 8: 229–239. https://doi.org/10.1139/m62-029
  3. Hashimoto T., Ozaki Y., Taminato M., Dass S. K., Mizuno M., Yoshimura K., Maoka T., and Kanazawa K., Brit. J. Nutr., 2009, 102: 242–248. https://doi.org/10.1017/S0007114508199007 https://www.ncbi.nlm.nih.gov/pubmed/19173766
  4. Kim S.M., Jung Y.J., Kwon O.N., Cha K.H., Um B.H., Chung D., and Pan C.H., Appl. Biochem. Biotechnol., 2012, 166: 1843–1855. https://doi.org/10.1007/s12010-012-9602-2 https://www.ncbi.nlm.nih.gov/pubmed/22371063
  5. Kotake-Nara E., Kushiro M., Zhang H., Sugawara T., Miyashita K., and Nagao A., J. Nutr., 2001, 131: 3303–3306. https://www.ncbi.nlm.nih.gov/pubmed/11739884
  6. Li W., Gao K., and Beardall J., J. Pone, PloS ONE, 2012, 7(12): 1–8.
  7. Moreau D., Tomasoni C., Jacquot C., Kaas R., Le Guedes R., Cadoret J.P., Muller-Feuga A., Kontiza I., Vagias C., Roussis V., and Roussakis C., Environ. Toxicol. Pharmacol., 2006, 22: 97–103. https://doi.org/10.1016/j.etap.2006.01.004 https://www.ncbi.nlm.nih.gov/pubmed/21783694
  8. Pasquet V., Chérouvrier J.-R., Farhat F., Thiérya V., Piot J.-M. Bérardb J.-B., Kaas R., Serive B., Patrice T., Cadoret J.-P., and Picot L., Mar. Biotechnol., 2011, 46: 59–67.
  9. Peng J., Yuan J.-P., Wu C.-F., and Wang J.-H., Mar. Drugs., 2011, 9: 1806–1828. https://doi.org/10.3390/md9101806 https://www.ncbi.nlm.nih.gov/pubmed/22072997 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210606
  10. Rijstenbil J.W., Mar. Ecol. Prog. Ser., 2003, 254: 37–48. https://doi.org/10.3354/meps254037
  11. Ryabushko V.I., Prazukin A.V., Popova E.V., and Nekhoroshev M.V., J. Black Sea, Mediter. Environ., 2014, 20(2): 108–113.