ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 3 of 8
Up
Algologia 2019, 29(2): 155–170
https://doi.org/10.15407/alg29.02.155
Flora and Geography

Phytoperiphyton of the Kem River and its tributaries (Republic of Karelia, Russia)

Komulaynen S.F.
Abstract

The results of a phytoperiphyton study in the Kem River and its 9 tributaries in the Republic of Karelia is presented. Taxonomic composition, ecology, and spatial dynamics of attached communities are analysed. A total of 179 species, varieties, and forms of algae from 5 divisions were identified: Cyanophyta () (27), Ochrophyta (111), Dinophyta (1), Rhodophyta (2), and Chlorophyta (38). The basic principles of the formation of the phytoperiphyton structure are discussed. Based on the analysis of the taxonomic composition and structure of the phytoperiphyton communities, their similarities are shown. Studied algal flora is characterized by significant asymmetry at the level of algal divisions. Ochrophyta, comprising 111 species from 3 classes, dominates in species richness. The leading class is Bacillariophyceae; it is typical for the structure of the phytoperiphyton of freshwater systems of the Republic of Karelia. The composition of the leading families is also characteristic of the northern region. Fragilariaceae (16 species), Naviculaceae (47), and Desmidiaceae (19) are the most important families in terms of phytocenology. In total, they comprise 82 species: almost 50% of revealed algal species. The group of leading genera (59 species, 33%) includes Cymbella C.Agardh (15 species), Eunotia Ehrenberg (14), Navicula Bory (12), and Cosmarium Ralfs and Fragilaria Lyngbye (9 species each). The dimensional structure of the periphyton is formed by species that differ markedly in size: from a few microns to several centimeters. The species dominating in number and biomass are also markedly different. In number, 35 species dominate; in various sites, the number of phytoperiphytic species ranged from 0.1 × 104 up to 1690.5 × 104 cells/cm2. Sixteen species dominated in number only in one site; another 6 species were dominants in two sites. Only four dominant species (Tabellaria fenestrata (Lyngbye) Kützing, T. flocculosa (Lyngbye) Kützing, Eunotia pectinalis (Kützing) Rabenhorst, and Achnanthes minutissima Kützing) had a frequency of occurrence of more than 50%. Eleven species dominated in terms of biomass, whose values varied from 0.01 to 11.8 mg/cm2. In terms of ecological and geographical peculiarities, most of the revealed algae are common oligohalobic species, acidophilic, or indifferent with respect to the pH of the environment. Based on the relatively high contribution of indicator species in the formation of periphytic communities, the water of the studied water bodies represents the second class of water purity.

Keywords: dominated species, ecology, Karelia, Kem River, phytoperiphyton, taxonomy, tributaries

Full text: PDF 547K

References
  1. Barinova S.S., Medvedeva L.A., Anisimova O.V. 2006. Diversity of algal indicators in the environmental assessment. Tel Aviv: Pilies Stud. 498 p. [Rus.]
  2. Chekryhzheva T.A. 1995. Technogenic waters of mining concentration plant impact on the Kenti River systems. Petrozavodsk: Karel. Res. Center RAS. Pp. 68–79.
  3. Eloranta P., Kwandrans J. 2007. Freshwater red algae (Rhodophyta) Identification guide to European taxa, particularly to those in Finland. Saarijrvi. Finland: Saarijrven Offset Oy. 103 p.
  4. Genkal S.I., Komulaynen S.F. 2008. Materials to the flora of Bacillariophyta of the Karelian waterbodies. IV. Rivers of the Karelian White Sea coast. Bot. J. 93(3): 393–398.
  5. Genkal S.I., Chekryzheva T.A. 2013. The flora of Bacillariophyta in lakes of the Kem River basin (Republic of Karelia). Bot. J. 98(6): 690–698.
  6. Genkal S.I., Chekryzheva T.A. 2014. New data on the flora of Bacillariophyta in lakes of the Kenti River basin (Republic of Karelia). Proc. Kola Sci. Centre RAS. 2: 46–60.
  7. Genkal S.I., Chekryzheva T.A. 2016. Materials on the flora of Bacillariophyta in rivers of the White Sea basin in the Republic of Karelia. Biologiya vnutrennikh vod. 9(1): 11–20. https://doi.org/10.1134/S1995082916010077
  8. Genkal S.I., Chekryzheva T.A., Komulaynen S.F. 2015. Diatom algae in waterbodies and watercourses of Karelia. Moscow: Sci. World. 202 p. [Rus.]
  9. Kelly M.G. 2013. Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. Eur. J. Phycol. 48: 437–450. https://doi.org/10.1080/09670262.2013.852694
  10. Kelly M.G., Whitton B.A. 1995. The trophic Diatom index: a new index for monitoring eutrophication in rivers. J. App. Phycol. 7: 433–444. https://doi.org/10.1007/BF00003802
  11. Kiselev I.A. 1954. Identification of freshwater algae of the USSR. Issue 6: Pyrrophyta. Moscow: Soviet Sci. 212 р. [Rus.]
  12. Komárek J. 2013. In: Süβwasserflora von Mitteleuropa. Vol. 19/3. Heidelberg, Berlin: Spektrum Akad. Verlag. 1130 p.
  13. Komárek J., Anagnostidis K. 1998. In: Süβwasserflora von Mitteleuropa. Vol. 19/1. Jena, etc.: Gustav Fischer. 548 p.
  14. Komárek J., Anagnostidis K. 2005. In: Süβwasserflora von Mitteleuropa. 19/2. Heidelberg: Elsevier/Spektrum. 759 p.
  15. Komárek J., Fott B. 1983. In: Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil 7, 1. Hälfte. Stuttgart: Schweizerbart. 1044 p.
  16. Komulaynen S.F. 1995. In: Technogenic waters of mining concentration plant impact on the Kenti River systems. Petrozavodsk: Karel. Res. Center RAS. 1995. Pp. 47–60. [Rus.]
  17. Komulaynen S.F. 2003. Recommendations for studying phytoperiphyton in small rivers. Petrozavodsk: Karel. Res. Center RAS. 43 p. [Rus.]
  18. Komulaynen S.F. 2004. Phytoperiphyton in rivers of Republic of Karelia. Bot. J. 89(3): 18–35.
  19. Komulaynen S.F. 2006. Cyanophyta/Cyanoprokaryota in periphyton in rivers of eastern Fennoscandia: role in ecosystems, research experience and problems. Proc. Kola Sci. RAS. (4): 14–23.
  20. Komulaynen S. 2007. Algological studies of fluvio-lacustrine systems in the northern European part of Russia. Int. J. Algae. 9(2): 139–149 https://doi.org/10.1615/InterJAlgae.v9.i2.40
  21. Komulaynen S. 2008. The green algae as structural element of phytoperiphyton communities in streams of the Northwestern Russia. Biology. 63(6): 859–865. https://doi.org/10.2478/s11756-008-0113-0
  22. Komulaynen S. 2009. Diatoms of Periphyton assemblages of small rivers in North-Western Russia. Studi Trent. Sci. Nat. 84: 153–160.
  23. Komulaynen S., Chekryzheva T. 2013. Response of algal communities to anthropogenic changes in minealization. Bot. Lith. 19(1): 57–66. https://doi.org/10.2478/botlit-2013-0010
  24. Komulaynen S.F., Chekrihzheva T.A., Vislyanskaya I.G. 2006. Algaeflora lakes and rivers of Karelia. Taxonomic composition and ecology. Petrozavodsk: Karel. Res. Center RAS. 78 p. [Rus.]
  25. Kosinskaya E.K. 1952. Conjugates, or mates. (I): Mesonenia and gonatosig algae. Moscow, Leningrad: Acad. Sci. USSR Press. 164 p. [Rus.]
  26. Kosinskaya E.K. 1960. In: Flora of spore plants of the USSR. Vol. 5, issue. 1. Moscow, Leningrad: Acad. Sci. USSR Press. 706 p.
  27. Krammer K., Lange-Bertalot H. 1986. Bacillariophyceae: Naviculaceae. In: Süβwasserflora von Mitteleuropa. Bd 2/1. Jena: Gustav Fischer Verlag. 860 p.
  28. Krammer K., Lange-Bertalot H. 1988. In: Süβwasserflora von Mitteleuropa. Bd 2/2. Stuttgart, New York: Gustav Fischer Verlag. 596 p.
  29. Krammer K., Lange-Bertalot H. 1991a. In: Süβwasserflora von Mitteleuropa. Bd 2/3. Stuttgart, Jena: Gustav Fischer Verlag. 576 p.
  30. Krammer K., Lange-Bertalot H. 1991b. In: Süβwasserflora von Mitteleuropa. Bd 2/4. Stuttgart, Jena: Gustav Fischer Verlag. 437 p.
  31. Moshkova N.A., Gollerbakh M.M. 1986. In: Flora of spore plants of the USSR. Issue 10. Moscow, Leningrad: Nauka. 360 p.
  32. Palamar-Mordvintseva G.M. 1982. In: Identification manual of freshwater algae of the USSR. Issue 11(2). Leningrad: Nauka. 620 p.
  33. Palamar-Mordvintseva G.M. 1984. In: Identification manual of the Ukrainian SSR. Issue 8, pt 1. Kiev: Naukova Dumka Press. 512 p.
  34. Pantle R., Buck H. 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach. 96(18): 1–604.
  35. Popova T.G. 1955. In: Identification manual of freshwater algae of the USSR. Issue 11(2). Leningrad: Nauka. 283 p.
  36. Rundina L.A. 1998. Zygnema algae of Russia (Chlorophyta: Zygnematophyceae, Zygnematales). SPb.: Nauka. 351 p.
  37. Shannon С.В., Weaver W. 1963. The Mathematical Theory of Communication. Urbana (Illinois): Univ. Illinois Press. 345 р.
  38. Simpson E.H. 1949. Measurement of diversity. Nature. 163: 688. https://doi.org/10.1038/163688a0
  39. Starmach K. 1985. In: Süβwasserflora von Mitteleuropa. Bd 1. Jena: VEB Gustav Fischer Verlag. 515 p.
  40. Stevenson R.J., Smol J.P. 2003. In: Freshwater Algae of North America, Ecology and Classification. San Diego: Acad. Press. Pp. 775–804. https://doi.org/10.1016/B978-012741550-5/50024-6
  41. Trifonova I.S. 1973. In: Biological research on inland waters of the Baltics. Minsk: High school. Pp. 32–34.
  42. Vislyanskaya I.G. In: Status of water objects in Republic of Karelia. Petrozavodsk: Karel. Sci. Сenter RAS. Pp. 112–115.