ISSN (print) 0868-8540, (online) 2413-5984
  • 3 of 7
Algologia 2019, 29(4): 404–420
Physiology, Biochemistry, Biophysics

The content of pigments and photosynthetic activity of Chlorella vulgaris Beijerinck (Chlorophyta) when exposed to sodium selenite, zinc sulphate, and chromium chloride

Bodnar O.I.1, Herts A.I.1, Herts N.V.2, Grubinko V.V.1

The content of photosynthetic pigments, their ratio and primary photosynthesis processes in Chlorella vulgaris were investigated by the combined and separate action of salts of trace elements Selenium (sodium selenite), Zinc (zinc sulfate) and Chromium (chromium chloride). The tendency to increase the total content of chlorophylls a and b and carotenoids with all options for the impact of trace elements was revealed. The combined action of Selenium and Zinc demonstrated the most noticeable effect. At the same time, the chlorophyll a/b ratio decreased as a result of the increase in the chlorophyll b content. As the chlorophyll fluorescence induction parameters changed, the level of non-photochemical chlorophyll quenching (NPQt) in the joint action of the salts of Selenium and Chromium increased. However, an increase in the relative content of chlorophyll and a slight change in the probable rate of loss of linear electron flow (LEF) in the action of the studied salts reveal the functioning of mechanisms to ensure the stability of the photosynthetic apparatus in C. vulgaris and prevent its inactivation.

Keywords: Chlorella vulgaris, pigments, Selenium, Zinc, Chromium, fluorescence chlorophyll induction

Full text: PDF (Rus) 392K

  1. Bodnar O.I., Burega N.V., Palchyk A.O., Viniarska H.B., Grubinko V.V. 2016. Optimization оf Chlorella vulgaris Beij. сultivation іn а bioreactor оf сontinuous аction. Biotechnol. Acta. 9(4): 42–49.
  2. Bodnar O.I., Kovalska H.B., Grubinko V.V. 2018. Regulation of biosynthesis of lipids in Chlorella vulgaris by compounds of zinc, chromium and selenium. Regulatory Mechanisms in Biosystems. 9(2): 267–274.
  3. Chiba M., Kikuchi M. 1984. The in vitro effects of zinc and manganese on delta-aminolevulinic acid dehydratase activity inhibited by lead or tin. Toxicol. Appl. Pharmacol. 73(3): 388–394.
  4. Doucha J., Livansky K., Kotrbacek V., Zachleder V. 2009. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: A review. Appl. Microbiol. Biotechnol. 83(6): 1001–1008.
  5. Einicker-Lamas M., Mezian G.A., Fernandes T.B., Silva F.L., Guerra F., Miranda K., Attias M., Oliveira M.M. 2002. Euglena gracilis as a model for study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ. Pollut. 120(3): 779–786.
  6. Fomishyna R.M., Syvash O.O., Zakharova T.O., Zolotareva O.K. 2009. The role of chlorophyllase in the adaptation of plants to lighting conditions. Ukr. Bot. J. 66(1): 94–102.
  7. Genty B., Briantais J.-M., Baker R. N. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, Gen. Subj. 990(1): 87–92.
  8. Goltsev V.N., Kaladzhi Kh.M., Paunov M., Baba V., Khorachek T., Moiski J., Kocel H., Allahverdiev S. 2016. Using variable chlorophyll fluorescence to assess the physiological state of the photosynthetic apparatus of plants. Rus. J. Plant Physiol. 63(6): 881–907
  9. Horcsik Z.T., Kovacs L., Laposi R., Mеszаros I., Lakatos G., Garab G. 2007. Effect of chromium on photosystem 2 in the unicellular green alga, Chlorella pyrenoidosa. Photosynthetica. 45(1): 65–69.
  10. Jolliffe I.T. 2002. Principal Component Analysis. New York: Springer-Verlag. 488 p.
  11. Kováčik J., Babula P., Hedbavny J., Krystofova O., Provaznik I. 2015. Physiology and methodology of chromium toxicity using alga Scenedesmus quadricauda as model object. Chemosphere. 120: 23–30.
  12. Kramer D., Johnson G., Kiirats O., Edwards G.E. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Res. 79(2): 209–218.
  13. Kuhlgert S., Austic G., Zegarac R., Osei-Bonsu I., Hoh D., Chilvers M.I., Roth M.G., Bi K., TerAvest D., Weebadde P., Kramer D.M. 2016. Multispe Q Beta: a tool for large-scale plant phenotyping connected to the open Photosyn Q network. Roy. Soc. Open Sci. 3(10): 160–592.
  14. Kumar K.S., Dahms H.U., Lee J.S., Kim H.C., Lee W.C., Shin K.-H. 2014. Algal photosynthetic response to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol. Environ. Saf. 104: 51–71.
  15. Kupper H., Setlik I., Spiller M., Frithjof C., Kupper F.C., Prasil O. 2002. Heavy metal induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol. 38: 429–441.
  16. Lu F., Gang D., Liu W., Zhan D., Wu H., Guo W. 2018. Comparative study of responses in the brown algae Sargassum thunbergii to zinc and cadmium stress. Chin. J. Oceanol. Limnol. 36(3): 933–941.
  17. Lukashiv O.Ya., Bodnar O.I., Grubinko V.V. 2017. Accumulation of Chromium and Selenium inside cells and in lipids of Сhlorella vulgaris Beij. during the incubation from chromium by sodium chloride and selenium. Int. J. Algae. 19(4): 357–366.
  18. Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51(345): 659–668.
  19. Musienko M.M., Parshikova T.V., Slavnyi P.S. 2001. Spectrophotometric methods in the practice of physiology, biochemistry and ecology of plants. Kyiv: Phytosociocenter Press. 200 p.
  20. Myers J.A., Curtis B.S., Curtis W.R. 2013. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophysics. 6: 1–4.
  21. Mysliwa-Kurdziel B., Prasad M.V., Strazalaka K. 2004. In: Heavy Metal Stressed in Plants. New Delhi: Narosa Publ. House. Pp. 146–181.
  22. Nguyen-Deroche T.N., Caruso A., Le T.T., Bui T.V., Schoefs B., Tremblin G., Morant-Manceau A. 2012. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatinsynthase expression of four marine diatoms. Sci. World J. Article ID 982957.
  23. Ou-Yang H.L., Kong X.Z., He W., Qin N., He Q.S., Wang Y., Wang R., Xu F.L. 2012. Effects of five heavy metals at sublethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin. Sci. Bull. 57: 3363–3370.
  24. Pandey U., Pandey J. 2008. Enhanced production of high-quality biomass, delta-aminolevulinic acid, bilipigments, and antioxidant capacity of a food alga Nostoc hopsislobatus. Appl. Biochem. Biotechnol. 150(2): 221–231.
  25. Petrovic J., Nikolic G., Markovic D. 2006. In vitro complexes of copper and zinc with chlorophyll. J. Serb. Chem. Soc. 71(5): 501–512.
  26. Polishchuk A.V., Topchiy N.N., Sytnik K.M. 2009. The influence of heavy metal ions on electron transfer on the acceptor side of photosystem II. Rep. NAS Ukr. 6: 203–210.
  27. Pospisil P. 2016. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci. 7: 1950.
  28. Rocchetta I., Kupper H. 2009. Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytol. 182(2): 405–420.
  29. Rodriguez M.C., Barsanti L., Passarelli V., Evangelista V., Conforti V., Gualtieri P. 2007. Effects of chromium on the photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ. Res. 105(2): 234–239.
  30. Sun X., Zhong Y., Huang Z., Yung Y. 2014. Selenium accumulation in unicellular green algae Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLoS ONE. 29(11): 1–8.
  31. Topachevsky A.V. 1975. Methods of physiological and biochemical studies of algae in hydrobiological practice. Kiev: Naukova Dumka Press. 247 p. [Rus.]
  32. Zemri K., Amar Y., Boutiba Z., Zemri M., Popovic R. 2012. Use of chlorophyll fluorescence to evaluate the effect of chromium on activity photosystem II at the alga Scenedesmus obliquus. Int. J. Res. Rev. Appl. Sci. 2(2): 304–314.
  33. Zhou Z., Li P., Liu Z., Liu X. 1997. Study on the accumulation of selenium and its binding to the proteins, polysaccharides and lipids from Spirulina maxima, S. platensis and S. subsalsa. Oceanol. Limnol. Sin. 28(4): 363–370.