ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 1 of 8
Up
Algologia 2019, 29(1): 3–29
https://doi.org/10.15407/alg29.01.003
Physiology, Biochemistry, Biophysics

Polyphenol compounds of macroscopic and microscopic algae

Zolotareva E.K., Mokrosnop V.M., Stepanov S.S.
Abstract

The functional roles of biosynthesis pathways and the diversity of polyphenolic compounds, the products of the secondary metabolism of macro- and microalgae, are discussed. Phenolic compounds are included in the integrated system of regulation of biochemical and bioenergetic processes in the plant cell. A wide range of biological effects of polyphenols is associated with their antioxidant properties. They are involved in protecting the plant cell from stress factors and detoxification of reactive oxygen species such as superoxide (O2-•), hydrogen peroxide (H2O2), hydroxyl radical (OH-), singlet oxygen (1O2), and hydroperoxyl radical (HO2-). Often, the accumulation of polyphenolic compounds in the cell is considered as an indicator of physiological stress. According to the chemical structure of polyphenols, there are several classes, such as phenolcarboxylic acids (hydroxybenzoic acids, hydroxycinnamic acids), flavonoids (flavones, flavonols, flavanones, flavanonols, flavanols, anthocyanins), isoflavonoids (isoflavones, coumestans), stilbenes, lignans, and phenolic polymers (proanthocyanidins — condensed and hydrolyzable tannins). The diversity of phenolic compounds in higher plants, which has arisen in the process of evolution, is associated with their landfall and the need to form protective systems from ultraviolet irradiation. Macroscopic brown (Phaeophyceae) and red (Rhadophyta) seaweeds, containing large amounts of polyphenols. The content of phlorotannins, which are polymers of phloroglucinol (1,3,5-trihydroxybenzene) of different size and composition, may amount to 25% of the dry biomass of Phaeophyceae. The phlorotannin molecules absorb solar radiation in the middle and far regions of the UV spectrum, which explains the photoprotective role of these compounds. Part of the synthesized phlorotannins is excreted into the extracellular space, and soluble forms accumulate in the cellular compartments, mainly in particular vacuoles – physodes; under the light microscope, they look like small refractive inclusions. Red algae accumulate polyphenolic compounds containing bromine (bromophenols); they are poisonous to mollusks and protect these seaweeds from being eaten. Unlike Phaeophyceae and Rhadophyta, microscopic algae synthesize polyphenolic compounds in small quantities. Although microalgae are evolutionarily more primitive than higher plants, or can even belong to completely different evolutionary branches, they are able to synthesize relatively complex polyphenols. Available data suggest that the processes of biosynthesis of flavonoids in microalgae are less complex than those of higher plants, although they are not inferior in diversity to representatives of Bryophyta. Due to the large number of phenolic groups, the molecules of flavonoids, phlorotannins, and bromophenols effectively bind heavy metal (HM) ions, which contribute to the accumulation of divalent metals inside cells, and their extracellular forms are involved in chelation of HM, reducing their toxicity. Phenolic compounds are involved in the antioxidant protection of algae and in the formation of an adaptive response to oxidative stress.

Keywords: Rhodophyta, Phaeophyta, microalgae, photosynthesis, antioxidants, phlorotannins, bromophenols, phenolcarboxylic acids, flavonoids

Full text: PDF 2.27M

References
  1. Abd El-Baky H.H., El-Baz F.K., El-Baroty G.S. 2009. Afr. J. Pharm. Pharmacol. 3(4): 133–139.
  2. Amsler C.D., Fairhead V.A. 2005. Adv. Bot. Res. 43: 1–91. https://doi.org/10.1016/S0065-2296(05)43001-3
  3. Azizullah A., Murad W., Adnan M., Ullah W., Häder D.P. 2013. Front. Environ. Sci. 1: 1–4. https://doi.org/10.3389/fenvs.2013.00004
  4. Babić O., Kovač D., Rašeta M., Šibul F., Svirčev Z., Simeunović J. 2016. J. Appl. Phycol. 28(4): 2333–2342. https://doi.org/10.1007/s10811-015-0773-4
  5. Birch A.J., Donovan F.W., Moewus F. 1953. Nature. 172: 902–904. https://doi.org/10.1038/172902a0 https://www.ncbi.nlm.nih.gov/pubmed/13111225
  6. Bowler C., Allen A.E., Badger J.H., Grimwood J., Jabbari K., Kuo A., Rayko E. 2008. Nature. 456: 239–244. https://doi.org/10.1038/nature07410 https://www.ncbi.nlm.nih.gov/pubmed/18923393
  7. Cervantes-Garcia D., Troncoso-Rojas R., Sanchez-Estrada A., Gonzá lez-Mendoza D., Gutierrez-Miceli F., Ceceсa-Duran C., Grimaldo-Juarez O. 2016. Gayana. 80: 1–5.
  8. Cervantes-Garcia D., Troncoso-Rojas R., Sanchez-Estrada A., Gonzá lez-Mendoza D., Grimaldo-Juarez O. 2013. J. Pure Appl. Microbiol. 7: 93–100.
  9. Chakraborty K., Joseph D., Praveen N.K. 2015. J. Food Sci. Technol. 52: 1924–1935. https://doi.org/10.1007/s13197-013-1189-2 https://www.ncbi.nlm.nih.gov/pubmed/25829573 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375198
  10. Cirulis J.T., Scott J.A., Ross G.M. 2013. Can. J. Physiol. Pharmacol. 91(1): 15–21. https://doi.org/10.1139/cjpp-2012-0249 https://www.ncbi.nlm.nih.gov/pubmed/23368282
  11. Cock J.M., Sterck L., Rouze P., Scornet D., Allen A.E., Amoutzias G., Wincker P. 2010. Nature. 465: 617–621. https://doi.org/10.1038/nature09016 https://www.ncbi.nlm.nih.gov/pubmed/20520714
  12. Colla L.M., Furlong E.B., Costa J.A.V. 2007. Braz. Arch. Biol. Technol. 50: 161–167. https://doi.org/10.1590/S1516-89132007000100020
  13. Duan X.J., Li X.M., Wang B.G. 2007. J. Nat. Prod. 70: 1210–1213. https://doi.org/10.1021/np070061b https://www.ncbi.nlm.nih.gov/pubmed/17602526
  14. Duval B., Shetty K., Thomas W.H. 1999. J. Appl. Phycol. 11(6): 559–566. https://doi.org/10.1023/A:1008178208949
  15. Ferrer J.L., Austin M.B., Stewart C., Noe J.P. 2008. Plant Physiol. Biochem. 46: 356–370. https://doi.org/10.1016/j.plaphy.2007.12.009 https://www.ncbi.nlm.nih.gov/pubmed/18272377 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860624
  16. Flodin C., Whitfield F.B. 1999. Water Sci. Technol. 40: 53–58. https://doi.org/10.2166/wst.1999.0260
  17. Freile-PelegrínY., Robledo D. 2014. Bioactive compounds from marine foods. In: Plant and animal sources. New Jersey: John Wiley & Sons Ltd. Pp. 113–129.
  18. Goiris K., Muylaert K., Fraeye I., Foubert I., De Brabanter J., De Cooman L. 2012. J. Appl. Phycol. 24(6): 1477–1486. https://doi.org/10.1007/s10811-012-9804-6
  19. Goiris K., Muylaert K., Voorspoels S., Noten B., De Paepe D., Baart E., De Cooman L. 2014. J. Phycol. 50(3): 483–492. https://doi.org/10.1111/jpy.12180 https://www.ncbi.nlm.nih.gov/pubmed/26988321
  20. Gómez I., Huovinen P. 2010. Photochem. Photobiol. 86(5): 1056–1063. https://doi.org/10.1111/j.1751-1097.2010.00786.x https://www.ncbi.nlm.nih.gov/pubmed/20670358
  21. Gonz á lez A.G., Santana-Casiano J.M. de Jesus Raposo M.F., de Morais R. M.S.C., de Morais A.M.M.B. 2012. Cienc. Mar. 38(1B): 245–261.
  22. de Jesus Raposo M.F., de Morais R.M.S.C., de Morais A.M.M.B. 2013. Life Sci. 93(15): 479–486. https://doi.org/10.1016/j.lfs.2013.08.002 https://www.ncbi.nlm.nih.gov/pubmed/23994664
  23. Imani S., Rezaei-Zarchi S., Hashemi M., Borna H., Javid A., Ali mohamad Zand A.M., Abarghouei H.B. 2011. J. Med. Plant Res. 5(13): 2775–2780.
  24. Iwashina T. 2000. J. Plant Res. 113: 287–299. https://doi.org/10.1007/PL00013940
  25. Jayshree A., Jayashree S., Thangaraju N. 2016. Ind. J. Pharm. Sci. 78(5): 575–581. https://doi.org/10.4172/pharmaceutical-sciences.1000155
  26. Kim S.M., Kang S.W., Jeon J.S., Jung Y.J., Kim W.R., Kim C.Y., Um B.H. 2013. Food Chem. 138: 2399–2406. https://doi.org/10.1016/j.foodchem.2012.11.057 https://www.ncbi.nlm.nih.gov/pubmed/23497901
  27. Klejdus B., Lojková L., Plaza M., Snуblová M., Stěrbová D. 2010. J. Chromatogr. 1217(51): 7956–7965.
  28. Koivikko R., Loponen J., Honkanen T., Jormalainen V. 2005. J. Chem. Ecol. 31(1): 195–212. https://doi.org/10.1007/s10886-005-0984-2 https://www.ncbi.nlm.nih.gov/pubmed/15839490
  29. Koivikko R., Loponen J., Pihlaja K., Jormalainen V. 2007. Phytochem. Anal. 18: 326–332. https://doi.org/10.1002/pca.986 https://www.ncbi.nlm.nih.gov/pubmed/17623367
  30. Kov á čik J., Klejdus B., Bačkor M. 2010. Photochem. Photobiol. 86(3): 612–616.
  31. Koukal B., Ross é P., Reinhardt A., Ferrari B., Wilkinson K.J., Loizeau J.L., Dominik J. 2007. Water Res. 41(1): 63–70. https://doi.org/10.1016/j.watres.2006.09.014 https://www.ncbi.nlm.nih.gov/pubmed/17101169
  32. Levy J.L., Angel B.M., Stauber J.L., Poon W.L., Simpson S.L., Cheng S.H., Jolley D.F. 2008. Aquat. Toxicol. 89(2): 82–93. https://doi.org/10.1016/j.aquatox.2008.06.003 https://www.ncbi.nlm.nih.gov/pubmed/18639348
  33. Li H., Cheng K., Wong C., Fan K., Chen F., Jiang Y. 2011. Food Chem. 102: 771–776. https://doi.org/10.1016/j.foodchem.2006.06.022
  34. Liu M., Hansen P.E., Lin X. 2011. 9(7): 1273–1292. https://doi.org/10.3390/md9071273 https://www.ncbi.nlm.nih.gov/pubmed/21822416 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148503
  35. López A., Rico M., Santana-Casiano J.M., González A.G., González-Dávila M. 2015. Environ. Sci. Poll. Res. 22(19): 14820–14828. https://doi.org/10.1007/s11356-015-4717-y https://www.ncbi.nlm.nih.gov/pubmed/25989863
  36. López A., Rico M., Rivero A., de Tangil M.S. 2011. Food Chem. 125(3): 1104–1109. https://doi.org/10.1016/j.foodchem.2010.09.101
  37. Lu Y., Wang J., Yu Y., Shi L., Kong F. 2014. Chemosphere. 117: 164–169. https://doi.org/10.1016/j.chemosphere.2014.06.040 https://www.ncbi.nlm.nih.gov/pubmed/25016428
  38. Markham K.R., Porter L.J. 1969. Phytochemistry. 8(9): 1777–1781. https://doi.org/10.1016/S0031-9422(00)85968-3
  39. May P., Wienkoop S., Kempa S., Usadel B., Christian N., Rupprecht J., Weiss J., Recuenco-Munoz L., Ebenhöh O., Weckwerth W., Walther D. 2008. Genetics. 179: 157–166. https://doi.org/10.1534/genetics.108.088336 https://www.ncbi.nlm.nih.gov/pubmed/18493048 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390595
  40. Meslet-Cladière L., Delage L., Leroux C.J.J., Goulitquer S., Leblanc C., Creis E., Ar Gall E., Stiger-Pouvreau V., Czjzek M., Potin P. 2013. Plant Cell. 25(8): 3089–3103. https://doi.org/10.1105/tpc.113.111336 https://www.ncbi.nlm.nih.gov/pubmed/23983220 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784601
  41. Michel G., Tonon T., Scornet D., Cock J.M., Kloareg B. 2010. New Phytol. 188: 67–81. https://doi.org/10.1111/j.1469-8137.2010.03345.x https://www.ncbi.nlm.nih.gov/pubmed/20618908
  42. Miranda M.S., Cintra R.G., Barros S.B.M., Mancini-Filho J. 1998. J. Med. Biol. Res. 31(8): 1075–1079. https://doi.org/10.1590/S0100-879X1998000800007
  43. Mokrosnop V.M., Polishchuk A.V., Zolotareva E.K. 2016. Appl. Biochem. Microbiol. 52(2): 216–221. https://doi.org/10.1134/S0003683816020101
  44. de Morais M.G., Vaz B.D.S., de Morais E.G., Costa J.A.V. 2015. BioMed. Res. Int. 74: 498–506.
  45. Mouradov A., Spangenberg G. 2014. Front. Plant Sci. 5: 620. https://doi.org/10.3389/fpls.2014.00620 https://www.ncbi.nlm.nih.gov/pubmed/25426130 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226159
  46. Muzafarov E.N., Ivanov B.N., Mal'yan A.N., Zolotareva E.K. 1986. Biochem. Physiol. Pflanz. 181(6): 381–390. https://doi.org/10.1016/S0015-3796(86)80024-5
  47. Muzafarov E.N., Zolotareva E.K. 1989. Biochem. Physiol. Pflanz. 184(5–6): 363–369. https://doi.org/10.1016/S0015-3796(89)80030-7
  48. Mykhaylenko N.F., Syvash O.O., Tupik N.D., Zolotareva O.K. 2004. Photosynthetica. 42(1): 105–110 https://doi.org/10.1023/B:PHOT.0000040577.30424.d1
  49. Nagayama K., Shibata T., Fujimoto K., Honjo T., Nakamura T. 2003. Aquaculture. 218: 601–611. https://doi.org/10.1016/S0044-8486(02)00255-7
  50. Ngaki M.N., Louie G.V., Philippe R.N., Manning G., Pojer F., Bowman M.E., Li L., Larsen E., Wurtele E.S., Noel J.P. 2012. Nature. 485: 530–544. https://doi.org/10.1038/nature11009 https://www.ncbi.nlm.nih.gov/pubmed/22622584 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880581
  51. Onofrejová L., Vašíčková J., Klejdus B., Stratila P., Mišurcov á c L., Kráčmarc S., Kopeckýb J., Vaceka J. 2010. J. Pharm. Biomed. Anal. 51(2): 464–470. https://doi.org/10.1016/j.jpba.2009.03.027 https://www.ncbi.nlm.nih.gov/pubmed/19410410
  52. Pourcel L., Routaboul J.M., Cheynier V., Lepiniec L., Debeaujon I. 2007. Trends Plant Sci. 12(1): 29–36. https://doi.org/10.1016/j.tplants.2006.11.006 https://www.ncbi.nlm.nih.gov/pubmed/17161643
  53. Rausher M.D. 2006. The evolution of flavonoids and their genes. In: The science of flavonoids. New York: Springer. Pp. 175–211. https://doi.org/10.1007/978-0-387-28822-2_7
  54. Rice-Evans C., Miller N., Paganga G. 1997. Trends Plant Sci. 2(4): 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2
  55. Rico M., López A., Santana-Casiano J.M., Gonzаlez A.G., Gonzаlez-Dаvila M. 2013. Limnol. Oceanogr. 58: 144–152.
  56. Rodríguez-Zavala J.S., García-García J.D., Ortiz-Cruz M.A., Moreno-Sanchez R. 2007. J. Environ. Sci. Health. Pt A. 42(10): 1365–1378.
  57. Rose A.L., Waite T.D. 2003. Aquat. Sci. 65(4): 375–383. https://doi.org/10.1007/s00027-003-0676-3
  58. Safafar H., Van Wagenen J., Møller P., Jacobsen C. 2015. Mar. Drugs. 13(12): 7339–7356. https://doi.org/10.3390/md13127069 https://www.ncbi.nlm.nih.gov/pubmed/26690454 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699242
  59. Santana-Casiano J.M., González-Dávila M., González A.G., Rico M., López A., Martel A. 2014. Mar. Chem. 158: 10–16. https://doi.org/10.1016/j.marchem.2013.11.001
  60. Shnyukova E.I., Zolotareva E.K. 2015. Algologia. 25(1): 3–20. https://doi.org/10.15407/alg25.01.003
  61. Shnyukova E.I., Zolotareva E.K. 2017. Algologia. 27(1): 22–44. https://doi.org/10.15407/alg27.01.022
  62. Sivash A.A., Los S.I., Fomishina R.N., Zolotareva E.K. 2004. Int. J. Algae. 6(1): 50–60. https://doi.org/10.1615/InterJAlgae.v6.i1.60
  63. Stepanov S.S., Zolotareva E.K. 2015. J. Appl. Phycol. 27(4): 1509–1516. https://doi.org/10.1007/s10811-014-0445-9
  64. Sukhorukov B.I., Montrel M.M., Opanasenko V.K., Zolotareva E.K. 1983. Mol. Biol. 17(5): 822–830.
  65. de Souza T.D., Prietto L., de Souza M.M., Furlong E.B. 2015. Afr. J. Biotechnol. 14: 2903–2909. https://doi.org/10.5897/AJB2015.14926
  66. Suzuki N., Koussevitzky S., Mittler R.O.N., Miller G.A.D. 2012. Plant Cell & Environ. 35(2): 259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x https://www.ncbi.nlm.nih.gov/pubmed/21486305
  67. Swanson A.K., Druehl L.D. 2002. Aquat. Bot. 73(3): 241–253. https://doi.org/10.1016/S0304-3770(02)00035-9
  68. Takahama U., Oniki T. 2000. J. Plant Res. 113(3): 301–309. https://doi.org/10.1007/PL00013933
  69. Titlyanov E.A., Titlyanova T.V., Belous O.S. 2011. Izv. TINRO. 165: 305–319.
  70. Wang J., Li Q., Li M.M., Chen T.H., Zhou Y.F., Yue Z.B. 2014. Biores. Technol. 163: 374–376. https://doi.org/10.1016/j.biortech.2014.04.073 https://www.ncbi.nlm.nih.gov/pubmed/24841491
  71. Wang C., Zhang S.H., Wang P.F., Hou J., Zhang W.J., Li W., Lin Z.P. 2009. Chemosphere. 75: 1468–1476. https://doi.org/10.1016/j.chemosphere.2009.02.033 https://www.ncbi.nlm.nih.gov/pubmed/19328518
  72. Winkel-Shirley B. 2002. Curr. Opin. Plant Biol. 5(3): 218–223. https://doi.org/10.1016/S1369-5266(02)00256-X
  73. Winters C., Guéguen C., Noble A. 2017. J. Appl. Phycol. 29(3): 1391–1398. https://doi.org/10.1007/s10811-016-1040-z
  74. Worms I., Simon D.F., Hassler C.S., Wilkinson K.J. 2006. Biochimie. 88(11): 1721–1731. https://doi.org/10.1016/j.biochi.2006.09.008 https://www.ncbi.nlm.nih.gov/pubmed/17049417
  75. Yoshie-Stark Y., Hsieh Y.P., Suzuki T. 2003. J. Tokyo Univ. Fish. 89: 1–6.
  76. Zolotareva O.K., Podorvanov V.V., Dubyna D.V. 2017. Ukr. Bot. J. 74(4): 373–384. https://doi.org/10.15407/ukrbotj74.04.303
  77. Zolotareva O.K., Shnyukova E.I., Sivash O.O, Mikhailenko N.F. 2008. Prospects for the use of microalgae in biotechnology. Kyiv: Alterpress. 234 p. [Ukr.]