Algae of biological soil crusts from sand dunes of the Danube Delta biosphere reserve (Odesa Region, Ukraine)

Authors

Mikhailyuk T.I.1*, Vinogradova O.M.1, Glaser K.2, Rybalka N.3, Demchenko E.M.1, Karsten U.2
1 M.G. Kholodny Institute of Botany, NAS of Ukraine, 2 Tereshchenkivska Str., Kyiv 01601, Ukraine
2 University of Rostock, Institute of Biol. Sci., Department of Appl. Ecology and Phycology, 3 Albert-Einstein-Strasse, Rostock D-18057, Germany
3 Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sci., Georg August University Göttingen, 18 Nikolausberger Weg, Göttingen 37073, Germany

Section:

Flora and Geography

Issue:

Vol. 31 No. 1 (2021)

Pages:

25–62

DOI:

https://doi.org/10.15407/alg31.01.025

Abstract

The species composition of algae from biological soil crusts (biocrusts) on the surface of sand dunes (Black Sea coast, Primorske, Izmail District, Odesa Region, Ukraine) was investigated. Samples were collected from three coastal localities: Katranivska Spit, Zhebryianska Bay and Zhebryianska Ridge. The latter two localities are in the territory of the Danube Delta Biosphere Reserve. The samples were investigated by direct microscopy, followed by a culture approach. 60 species from Chlorophyta (32), Cyanobacteria (16), Streptophyta (7) and Ochrophyta (5) were identified. Representatives of the cyanobacterial genera Microcoleus Desmazières ex Gomont, Coleofasciculus M.Siegesmund, J.R.Johansen & T.Friedl, Nostoc Vaucher ex Bornet & Flahault, Hassallia Berkeley ex Bornet & Flahault, and streptophytes from the genus Klebsormidium P.C.Silva, Mattox & W.H.Blackwell dominated in the studied biocrusts. Phylogenetic analyses based on 16S/18S rRNA as well as 16S-23S ITS/ITS-1,2 regions were undertaken for some strains of cyanobacteria and eukaryotic algae. As a result, species identification and their position in respective phylogeny was refined, as well as aiding the discovery of some interesting and rare species. New genera and species were described (Streptosarcina arenaria Mikhailyuk & Lukešová and Tetradesmus arenicola Mikhailyuk & P.Tsarenko); with two genera (Nodosilinea R.B.Perkerson & D.A.Casamatta and Pleurastrosarcina H.J.Sluiman & P.C.J.Blommers) and four species reported for the first time for the flora of Ukraine (Nodosilinea epilithica Perkerson & Casamatta, Pseudomuriella aurantiaca (W.Vischer) N.Hanagata, Pleurochloris meiringensis Vischer, Pleurastrosarcina terriformae Darienko, W.J.Kang, Orzechowski & Pröschold). Comparison of the results from this study with similar investigations at Cape Kazantip (Sea of Azov, Ukraine) and at two islands of the Baltic Sea (Rügen, Usedom, Germany) revealed that sand composition and texture, as well as climate type of the respective region, are the main factors determining species composition of algae and cyanobacteria in biocrusts of maritime dunes.

Keywords:

cyanobacteria, eukaryotic algae, biological soil crusts, sand dunes, species composition, taxonomy, ecology, 16S/18S rRNA, 16S-23S ITS/ITS-1,2, secondary structure, Danube Delta, Black Sea, Ukraine

References

Akaike H. 1974. A new look at the statistical model identification. Automat. Control, IEEE Trans. Automat. Control. 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705

Algae: Reference Book. 1989. Ed. S.P. Wasser. Kyiv: Naukova Dumka Press. 608 p. [Водоросли: Справочник. 1989. Под ред. С.П. Вассера. Киев: Наук. думка. 608 с.].

Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. 2006, 2009, 2011, 2014. Vol. 1–4. Eds P.M. Tsarenko, S.P. Wasser, E. Nevo. Ruggell: A.R.G. Gantner Verlag K.-G.

Andreyeva V.M. 2005. Novosti sistematiki nizshikh rastenii. 38: 3–7. [Андреева В.М. 2005. Неподвижные зеленые водоросли (Chlorophyta) из почв правобережья р. Ортины (устье р. Печоры). Новости системат. низш. раст. 38: 3-7].

Barcytė D., Hodač L., Nedbalová L., Elster J. 2018. Chloromonas svalbardensis n. sp. with insights into the phylogroup Chloromonadinia (Chlorophyceae). J. Eukar. Microbiol. 65: 882–892. https://doi.org/10.1111/jeu.12633 https://www.ncbi.nlm.nih.gov/pubmed/29752887s

Belnap J., Weber B., Büdel B. 2016. Biological soil crusts as an organizing principle in drylands. Ecol. Stud. 226: 3–15. https://doi.org/10.1007/978-3-319-30214-0_1

Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 6318: 1–95.

Bock C., Krienitz L., Pröschold T. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea. 11: 293–312. https://doi.org/10.5507/fot.2011.028

Boyko M.F., Voytyuk Yu.A., Kondratyuk S.Ya., Kostikov I.Yu. 1984. Problems of general and molecular biology. 3: 78–82. [Бойко М.Ф., Войтюк Ю.А, Кондратюк С.Я., Костиков И.Ю. 1984. Участие бессосудистых растений в демутации днепровских песков. Проблемы общей и молекулярной биологии. 3: 78-82].

Büdel B. 2002. Diversity and ecology of biological crusts. Progr. Bot. 63: 386–404. https://doi.org/10.1007/978-3-642-56276-1_16

Büdel B., Dulić T., Darienko T., Rybalka N., Friedl T. 2016. Cyanobacteria and algae of biological soil crusts. Ecol. Stud. 226: 55–81. https://doi.org/10.1007/978-3-319-30214-0_4

Byun Y., Han K. 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics. 25: 1435–1437. https://doi.org/10.1093/bioinformatics/btp252 https://www.ncbi.nlm.nih.gov/pubmed/19369500

Čapková K., Haufer T., Rehakova K., Doležal J. 2016. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya. Microbial Ecol. 71(1): 113–123. https://doi.org/10.1007/s00248-015-0694-4 https://www.ncbi.nlm.nih.gov/pubmed/26552394

Danube Biosphere Reserve. Plant world. 2003. Eds D.V. Dubyna, Yu.R. Shelyag-Sosonko, O.I. Zhmud. Kyiv: Phytosociocentr. 458 p. [Дунайський біосферний заповідник. Рослинний світ. Ред. Д.В. Дубина, Ю.Р. Шеляг-Сосонко, О.І. Жмуд. Київ: Фітосоціоцентр. 458 с.].

Darienko T.M. 2008. In: Actual problems of Botany and Ecology: Coll. articles. Vol. 2. Kyiv: Phytosociocentеr. Pp. 13–20. [Дарієнко Т.М. 2008. Перші відомості про наземні водорості національного природного парку «Подільські Товтри». В кн.: Актуальні проблеми ботаніки та екології: Зб. наук. праць. Вип. 2. Київ: Фітосоціоцентр. С. 13-20].

Darienko T.M. 2012. Ukr. Bot. J. 69(1): 111–124. [Дарієнко Т.М. 2012. Загальна характеристика та особливості видового складу водоростей позаводних місцезростань острова Зміїний (Чорне море, Україна). Укр. бот. журн. 69(1): 111-124].

Darienko T., Hoffmann L. 2003. Algal growth on cultural monuments in Ukraine. Biologia (Bratislava). 58: 575–587.

Darienko T., Gustavs L., Eggert A., Wolf W., Pröschold T. 2015. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and dna barcoding with further implications for the species identificationin environmental samples. PLoS ONE. 10(6): e0127838. https://doi.org/10.1371/journal.pone.0127838 https://www.ncbi.nlm.nih.gov/pubmed/26080086 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469705

Darienko T., Kang W., Orzechowski A. K., Pröschold T. 2019. Pleurastrosarcina terriformae, a new species of a rare desert trebouxiophycean alga discovered by an integrative approach. Extremophiles. 23: 573–586. https://doi.org/10.1007/s00792-019-01108-5 https://www.ncbi.nlm.nih.gov/pubmed/31227902 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692296

Demchenko E., Mikhailyuk T., Coleman A.W., Pröschold T. 2012. Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrative approach. Eur. J. Phycol. 47: 264–290. https://doi.org/10.1080/09670262.2012.678388

Demchenko E., Leya T., Coleman A.W., Pröschold T. 2013. In: BioSyst. EU 2013 Global systematics!: Mat. V Int. conf. (Viena, 18-22 Feb., 2013). Viena. Pp. 46–47.

De Winder B. 1990. Ecophysiological strategies of droughttolerant phototrophic microorganisms in dune soils. PhD. (Biol.) Abstract. Amsterdam.

Eddie B., Krembs C., Neuer S. 2008. Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar. Ecol. Prog. Ser. 354: 107–117. https://doi.org/10.3354/meps07243

Ettl H., Gärtner G. 2014. Syllabus der Boden-, Luft- und Flechtenalgen. 2nd ed. Munich: Spektrum Akad. Verlag. 773 p. https://doi.org/10.1007/978-3-642-39462-1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949288

Fučikova К., Rada J.C., Lewis L.A. 2011. The tangled taxonomic history of Dictyococcus, Bracteacoccus and Pseudomuriella (Chlorophyceae, Chlorophyta) and their distinction based on a phylogenetic perspective. Phycologia. 50(4): 422–429. https://doi.org/10.2216/10–69.1

Fučíková K., Flechtner V.R., Lewis L.A. 2012. Revision of the genus Bracteacoccus Tereg (Chlorophyceae, Chlorophyta) based on a phylogenetic approach. Nova Hedw. 96: 15–59. https://doi.org/10.1127/0029-5035/2012/0067

Fucíková K., Lewis P.O., Lewis L.A. 2014. Widespread desert affiliation of Trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycol. Res. 62(4): 294–305. https://doi.org/10.1111/pre.12062

Fulnečková J., Hasíková T., Fajkus J., Lukešová A., Eliáš M., Sýkorová E. 2012. Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol. Evol. 4: 248–264. https://doi.org/10.1093/gbe/evs007 https://www.ncbi.nlm.nih.gov/pubmed/22247428 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318450

Goff L.J., Moon D.A. 1993. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J. Phycol. 29: 381–384. https://doi.org/10.1111/j.0022–3646.1993.00381.x

Gontcharov A.A., Melkonian M. 2010. Molecular phylogeny and revision of the genus Netrium (Zygnematophyceae, Streptophyta): Nucleotaenium gen. nov. J. Phycol. 46: 346–362. https://doi.org/10.1111/j.1529–8817.2010.00814.x

Guiry M.D., Guiry G.M. 2020. AlgaeBase. World. electron. publ., Nat. Univ. Ireland, Galway.

Hoef-Emden K., Melkonian M. 2003. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist. 154: 371–409. https://doi.org/10.1078/143446103322454130 https://www.ncbi.nlm.nih.gov/pubmed/14658496

Hoppert M., Reimer R., Kemmling A., Schröder A., Günzl B., Heinken T. 2004. Structure and reactivity of a biological soil crust from xeric sandy soil in Central Europe. Geomicrobiology. 21: 183–191. https://doi.org/10.1080/01490450490275433

Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30: 772–780. https://doi.org/10.1093/molbev/mst010 https://www.ncbi.nlm.nih.gov/pubmed/23329690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603318

Khromov S.S., Likhosha L.V. 2003. ONU Bull. 8(11): 138–150. [Хромов С.С., Лихоша Л.В. 2003. Значення піщаних хвиленакатних пасом у сучасному стані Кілійської дельти Дунаю. Вісн. ОНУ. 8(11): 138-150].

Komárek J., Perman J. 1978. Review of the genus Dictyosphaerium (Chlorococcales). Algol. Stud. 20: 233–297.

Komárek J. 2013. In: Süsswasserflora von Mitteleuropa. Bd 19/3. Berlin, Heidelberg: Elsevier. 1130 p. https://doi.org/10.1007/978-3-8274-2737-3

Komárek J., Anagnostidis K. 2005. In: Süsswasserflora von Mitteleuropa. Bd 19/2. München: Elsevier Spectrum. 759 p.

Komárek J., Kaštovský J., Mareš J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014 using a polyphasic approach. Preslia. 86(4): 295–235.

Kostikov I.Yu., Rybchinskiy O.V. 1995. Algologia. 5(4): 363–374. [Костиков И.Ю., Рыбчинский О.В. 1995. Наземные альгогруппировки псамофитного сукцессионного ряда острова Шелестов (Каневский заповедник, Украина). Альгология. 5(4): 363-374].

Kostikov I.Yu., Romanenko P.O., Demchenko E.M., Darienko T.M., Mikhailyuk T.I. Rybchinskiy O.V., Solonenko A.M. 2001. The soil algae from Ukraine (history and methods of investi-gation, classification system, floristics). Kyiv: Phytosociocenter. 300 р. [Костіков І.Ю., Романенко П.О., Демченко Е.М., Дарієнко Т. М., Михайлюк Т.І., Рибчинський О.В., Солоненко А.М. 2001. Водорості ґрунтів України (історія та методи дослідження, система, конспект флори). Київ: Фітосоціоцентр. 300 с.].

Kovalenko O.V. 2009. In: Flora of algae of Ukraine. Issue І, pt 2. Kyiv: Aristey. 387 p. [Коваленко О.В. 2009. In: Флора водоростей України. Синьозелені водорості. Т. I, вип. 1. Кyiv: Арістей. 387 с.].

Lane D.J. 1991. In: Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons. Pp. 115–175.

Lilitskaya G.G. 2004. Algologia. 14(3): 348–358. [Лилицкая Г.Г. 2004. Зеленые жгутиковые водоросли малых водоемов г. Киева и его окрестностей. 2. Chlamydomonadaceae (Chlorophyceae). Альгология. 14(3): 348-358].

Liu C., Huang X., Wang X., Zhang X., Li G. 2006. Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics. Phycologia. 45: 190–198. https://doi.org/10.2216/03–88.1

Maltsev Y.I., Maltseva I.A., Maltseva S.Yu., Kulikovskiy M.S. 2020. Biotechnological potential of a new strain of Bracteacoccus bullatus (Sphaeropleales, Chlorophyta) as a promising producer of omega-6 polyunsaturated fatty acids. Rus. J. Plant Physiol. 67(1): 185–193. https://doi.org/10.1134/S1021443720010124

Mamaeva A., Petrushkina M., Maltsev Y., Gusev E., Kulikovskiy M., Filimonova A., Sorokin B., Zotko N., Vinokurov V., Kopitsyn D., Petrova D., Novikov A., Namsaraev Z., Kuzmin D. 2018. Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations. J. Appl. Phycol. 30: 2237–2246. https://doi.org/10.1007/s10811-018-1471-9

Marin B., Klingberg M., Melkonian M. 1998. Phylogenetic relationships among the Cryptophyta: analyses of nuclearencoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist. 149: 265–276. https://doi.org/10.1016/S1434-4610(98)70033-1

Marin B., Palm A., Klingberg M., Melkonian M. 2003. Phylogeny and taxonomic revision of plastid-containing Euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist. 154: 99–145. https://doi.org/10.1078/143446103764928521 https://www.ncbi.nlm.nih.gov/pubmed/12812373

Marin B., Nowack E.C.M., Melkonian M. 2005. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 156: 425–432. https://doi.org/10.1016/j.protis.2005.09.001 https://www.ncbi.nlm.nih.gov/pubmed/16310747

Maun A.M. 2009. The biology of coastal sand dunes. New York: Oxford Univ. Press. 288 p. https://doi.org/10.1093/oso/9780198570356.001.0001

Mikhailyuk T. 2013. Terrestrial algae from the granite outcrops of river valleys of the Ukraine. Int. J. Algae. 15(4): 311–330. https://doi.org/10.1615/InterJAlgae.v15.i4.20 https://doi.org/10.1615/InterJAlgae.v15.i4.20

Mikhailyuk T., Demchenko E.M., Kondratyuk S.Ya. 2003. Parietochloris ovoideus sp. nov. (Trebouxiophyceae, Chlorophyta), a new aerophyte alga from Ukraine. Algol. Stud. 110: 1–16. https://doi.org/10.1127/1864-1318/2003/0110-0001

Mikhailyuk T.I., Kondratyuk S.Ya., Nyporko S.O., Darienko T.M., Demchenko E.M., Voitsekhovich A.O. 2011. Lichens, mosses and terrestrial algae of granites of Ukraine. Kyiv: Alterpress. 398 p. [Михайлюк Т.І., Кондратюк С.Я., Нипорко С.О., Дарієнко Т.М., Демченко Е.М., Войцехович А.О. 2011. Лишайники, мохоподібні та наземні водорості гранітних каньйонів України. Київ: Альтерпрес. 398 с.].

Mikhailyuk T., Glaser K., Holzinger A., Karsten U. 2015. Biodiversity of Klebsormidium (Streptophyta) from alpine biological soil crusts (Alps, Tyrol, Austria, and Italy). J. Phycol. 51(4): 750–767. https://doi.org/10.1111/jpy.12316 https://www.ncbi.nlm.nih.gov/pubmed/26504252 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618304

Mikhailyuk T.І., Vinogradova O.N., Glaser K., Karsten U. 2016. New Taxa for the Flora of Ukraine, in the Context of Modern Approaches to Taxonomy of Cyanoprokaryota/ Cyanobacteria. Int. J. Algae. 18(4): 301–320. https://doi.org/10.1615/InterJAlgae.v18.i4.10 https://doi.org/10.1615/InterJAlgae.v18.i4.10

Mikhailyuk T.І., Vinogradova O.N., Glaser K., Demchenko E., Karsten U. 2018a. Diversity of Terrestrial Algae of Cape Kazantip (the Sea of Azov, Ukraine) and Some Remarks on their Phylogeny and Ecology. Int. J. Algae. 20(4): 313–338. https://doi.org/10.1615/ https://doi.org/10.1615/InterJAlgae.v20.i4.10

Mikhailyuk T., Lukešová A., Glaser K., Holzinger A., Obwegeser S., Nyporko S., Friedl T., Karsten U. 2018b. New taxa of Streptophyte algae (Streptophyta) from terrestrial habitats revealed using an integrative approach. Protist. 169(3): 406–431. https://doi.org/10.1016/j.protis.2018.03.002 https://www.ncbi.nlm.nih.gov/pubmed/29860113 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071840

Mikhailyuk T.I., Glaser K., Karsten U. 2019a. In: II International scientific conference «Cyanoprokaryota/Cyanobacteria: Systematic, Ecology, Distribution»: Abstracts. (Syktyvkar, 16-21 Sept., 2019). Syktyvkar. Pp. 203–206. [Михайлюк Т.И., Глазер К., Карстен У. 2019a. Роль цианобактерий в формировании биологических почвенных корочек приморских песчаных дюн (Балтийское море, Германия). В кн.: II Между-народная научная школа-конференция «Цианопрокариоты/цианобактерии: систе-матика, экология, распространение»: Мат. докл. (Сыктывкар, 16-21 сент. 2019 г.). Сыктывкар. С. 203-206].

Mikhailyuk T., Glaser K., Tsarenko P., Demchenko E., Karsten U. 2019b. Composition of biological soil crusts from sand dunes of the Baltic Sea coast, in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. Eur. J. Phycol. 54: 263–290. https://doi.org/10.1080/09670262.2018.1557257

Mikhailyuk T., Vinogradova O., Holzinger A., Glaser K., Samolov E., Karsten U. 2019c. New record of the rare genus Crinalium Crow (Oscillatoriales, Cyanobacteria) from sand dunes of the Baltic Sea, Germany: epitypification and emendation of Crinalium magnum Fritsch et John based on an integrative approach. Phytotaxa. 400(3): 165–179. https://doi.org/10.11646/phytotaxa.400.3.4 https://www.ncbi.nlm.nih.gov/pubmed/31501642 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733703

Mikhailyuk T., Holzinger A., Tsarenko P., Glaser K., Demchenko E., Karsten U. 2020. Dictyosphaerium-like morphotype in terrestrial algae: what is Xerochlorella (Trebouxiophyceae, Chlorophyta)? J. Phycol. 56: 671–686. https://doi.org/10.1111/jpy.12974 https://www.ncbi.nlm.nih.gov/pubmed/31994728 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317402

Nakada T., Misawa K., Nozaki H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phyl. Evol. 48: 281–291. https://doi.org/10.1016/j.ympev.2008.03.016 https://www.ncbi.nlm.nih.gov/pubmed/18430591s

Neustupa J., Eliáš M., Škaloud P., Nĕmcová Y., Šejnohová L. 2011. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia. 50: 57–66. https://doi.org/10.2216/08–64.1

Perkerson R.B. III, Johansen J.R., Kováčik L., Brand J., Kastovsky J., Casamatta D.A. 2011. An unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J. Phycol. 47: 1397–1412. https://doi.org/10.1111/j.1529–8817.2011.01077.x https://www.ncbi.nlm.nih.gov/pubmed/27020364

Petersen J.B. 1932. The algal vegetation of Hammer Bakker. Bot. Tidskr. (Lund). 42: 1–48.

Pluis J.L.A., de Winder B. 1990. Natural stabilization. Catena Suppl. 18: 195–208.

Prikhodkova L.P. 1992. Blue-green algae of soils of Steppe zone of Ukraine. Kyiv: Naukova Dumka. 299 p. [Приходькова Л.П. 1992. Синезеленые водоросли почв степной зоны Украины. Київ: Наук. думка. 299 с.].

Pröschold T, Darienko T. 2020. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa. 441 (2): 113–142. https://doi.org/10.11646/phytotaxa.441.2.2

Raabová L., Elster J., Kováčik L. 2016. Phototrophic microflora colonizing substrates of man-made origin in Billefjorden Region, Central Svalbard. Czech Polar Rep. 6(1): 21–30. https://doi.org/10.5817/CPR2016-1-3

Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 https://www.ncbi.nlm.nih.gov/pubmed/12912839

Rybalka N., Andersen R.A., Kostikov I., Mohr K.I., Massalski A., Olech M., Friedl T. 2009. Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae). Environ. Microbiol. 11: 554–565. https://doi.org/10.1111/j.1462–2920.2008.01787.x https://www.ncbi.nlm.nih.gov/pubmed/19278444

Rybalka N., Mikhailyuk T., Darienko T., Dultz S., Blanke M., Friedl T. 2020. Genotypic and phylogenetic diversity of new isolates of terrestrial Xanthophyceae (Stramenopiles) from maritime sandy habitats. Phycologia. 59(6): 506–514. https://doi.org/10.1080/00318884. https://doi.org/10.1080/00318884.2020.1802950

Schulz K., Mikhailyuk T., Dreßler M., Leinweber P., Karsten U. 2016. Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microbiol. Ecol. 71: 178–193. https://doi.org/10.1007/s00248-015-0691-7 https://www.ncbi.nlm.nih.gov/pubmed/26507846

Shmidt V.M. 1980. Statistical methods in comparative floristics. Leningrad: Leningr. Univ. Press. 176 p. [Шмидт В.М. 1980. Статистические методы в сравнительной флористике. Л.: Изд-во Ленинград. ун-та. 176 с.].

Smith S.M., Abed R.M.M., Garcia-Pichel F. 2004. Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA. Microb. Ecol. 48: 200–208. https://doi.org/10.1007/s00248-004-0254-9 https://www.ncbi.nlm.nih.gov/pubmed/15546040

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35: 171–205. https://doi.org/10.1128/BR.35.2.171–205.1971 https://www.ncbi.nlm.nih.gov/pubmed/4998365 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC378380

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 https://www.ncbi.nlm.nih.gov/pubmed/24132122 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312

Temraleeva A.D., Dronova S.A. 2016. Novosti sistematiki nizshikh rastenii. 50: 125–141. [Темралеева А.Д., Дронова С.А. 2016. Первая находка почвенной цианобактерии Nodosilinea epilithica (Synechococcales, Cyanobacteria) в России. Новости системат. низш. раст. 50: 125-141]. https://doi.org/10.31111/nsnr/2016.50.125

Tsarenko P.M. 1990. Short identification manual of chlorococcal algae of Ukrainian SSR. Kyiv: Naukova Dumka. 208 p. [Царенко П.М. 1990. Краткий определитель хлорококковых водорослей Украинской ССР. Київ: Наук. думка. 208 с.]

Van den Acker J.A.M., Jungerius P.D. 1985. The role of algae in the stabilization of coastal dune blowouts. Earth Surf. Proc. Land. 10: 189–192. https://doi.org/10.1002/esp.3290100210

Vinogradova O.М. 2016. Chornomor. Bot. J. 12(1): 85–94. [Виноградова О.М. 2016. Cyanoprokaryota прибережних cолонців Куяльницького лиману. Чорномор. бот. журн. 12(1): 85-94]. https://doi.org/10.14255/2308-9628/16.121/9

Vinogradova O.N., Mikhailyuk T.I. 2009. Algal flora of the caves and grottoes of the National Nature Park "Podilsky Tovtry" (Ukraine). Int . J . Algae. 11(3): 289–304. https://doi.org/ https://doi.org/10.1615/InterJAlgae.v11.i3.80

Vinogradova O.N., Mikhailyuk T.I., Glaser K., Holzinger A., Karsten U. 2017. New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine. Ukr . Bot . J. 74(6): 509–520. https://doi.org/10.15407/ukrbotj74.06.509

Voytsekhovich A.A., Mikhailyuk T.I., Darienko T.M. 2011. Algologia. 21(1): 3–26. [Войцехович А.А., Михайлюк Т.И., Дариенко Т.М. 2011. Фотобионты лишайников: разнообразие, экологические особенности, взаимоотношения и пути совместной эволюции с микобионтом. Альгология. 21(1): 3-26]. http://algologia.co.ua/pdf/21/1/alg-2011-21-1–003.pdf

Watanabe S., Nakada T. 2018. Gymnomonas nepalensis gen. et sp. nov. for the naked flagellate strain 'Nepal', formerly identified as Dunaliella lateralis (Volvocales, Chlorophyceae). Phycol. Res. 66: 167–172. https://doi.org/10.1111/pre.12219

White T.J., Bruns T., Lee S., Teylor J. 1990. In: PCR Protocols: A Guide to Methods and Applications. London: Acad. Press. Pp. 315–322. https://doi.org/10.1016/B978-0-12-372180–8.50042-1 https://www.ncbi.nlm.nih.gov/pubmed/1696192

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31: 3406–3416. https://doi.org/10.1093/nar/gkg595 https://www.ncbi.nlm.nih.gov/pubmed/12824337 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169194

Citation

Mikhailyuk T.I., Vinogradova O.M., Glaser K., Rybalka N., Demchenko E.M., Karsten U. 2021. Algae of biological soil crusts from sand dunes of the Danube Delta biosphere reserve (Odesa Region, Ukraine). Algologia. 31(1): 25–62. https://doi.org/10.15407/alg31.01.025