ISSN (print) 0868-8540, (online) 2413-5984
  • 2 of 6
Algologia 2021, 31(2): 126–140
Physiology, Biochemistry, Biophysics

N-acetylneuraminic acid specific lectin and antibacterial activity from the red alga Gracilaria canaliculata Sonder

Le Dinh Hung, Vo Thi Dieu Trang

A new lectin from the marine red alga Gracilaria canaliculata (GCL) was isolated by a combination of aqueous ethanol extraction, ethanol precipitation, ion exchange and filtration chromatography. Lectin gave a single band with molecular mass of 22,000 Da in both non-reducing and reducing SDS-PAGE conditions, indicating that GCL is a monomeric protein. The hemagglutination activities of GCL were stable over a wide range of pH from 3 to 10, temperature up 60 oC and not affected by either the presence of EDTA or addition of divalent cations. Lectin GCL had high affinity for N-acetylneuraminic acid through interacting with the acetamido group at equatorial C2 position of these sugar residues, suggesting that GCL is specific for N-acetylneuraminic acid. Furthermore, GCL inhibited the growth of human and shrimp pathogenic bacteria, Staphylococcus aureus and Vibrio alginolyticus, although it did not affect the growth of Escherichia coli, Enterobacter cloace, Vibrio parahaemolyticus and V. harveyi. The red alga G. canaliculata may promise to be a source of valuable lectins for application as antibacterial agents.

Keywords: antibacterial activity, carbohydrate binding specificity, Gracilaria canaliculata, lectin, red alga

Full text: PDF (Rus) 464K

  1. Barre A., Simplicien M., Benoist H., Van Damme ElsJM., Rougé P. 2019. Mannose-specific lectins from marine algae: Diverse structural scaffolds associated to common virucidal and anti-cancer properties. Mar. Drugs. 17(8): 440.
  2. Barre A., Van Damme ElsJM., Simplicien M., Benoist H., Rougé P. 2020. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Mar. Drugs. 18(11): 1–543.
  3. Boonsri N., Rudtanatip T., Withyachumnarnkul B., Wongprasert K. 2017. Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. J. Appl. Phycol. 29(3): 1597–1608.
  4. Charungchitrak S., Petsom A., Sangvanich P., Karnchanatat A. 2011. Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chem. 126(3): 1025–1032.
  5. Chaves R.P., da Silva S.R., Neto L.G.N., Carneiro R.F., da Silva A.L.C., Sampaio A.H. 2018a. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int. J. Biol. Macromol. 107: 1320–1329.
  6. Chaves R.N., da Silva S.R., da Silva J.P.F.A., Carneiro R.F., de Sousa B.L., Abreu J.O., Carvalho F.C.T., Rocha C.R.C., Farias W.R.L., de Sousa O.V., Silva A.L.C., Sampaio A.H., Nagano C.S. 2018b. Meristiella echinocarpa lectin (MEL): a new member of the OAAH-lectin family. J. Appl. Phycol. 30: 2629–2638.
  7. Freitas A.L.P., Teixeira D.I.A., Costa F.H.F., Farias W.R.L., Lobato A.S.C., Sampaio A.H. 1997. A new survey of Brazilian marine algae for agglutinins. J. Appl. Phycol. 9: 495–501.
  8. Hanisch F.G., Hacker J., Schroten H. 1993. Specificity of S fimbriae on recombinant Escherichia coli: preferential binding to gangliosides expressing NeuGc alpha (2-3)Gal and NeuAc alpha (2-8)NeuAc. Infect. Immun. 61(5): 2108–2115.
  9. Hirayama M., Shibata H., Imamura K., Sakaguchi T., Hori K. 2016. High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120. Mar. Biotechnol. 18(1): 144-160
  10. Hori K., Miyazawa K., Fusetani N., Hashimoto K., Ito K. 1986. Hypnins, low-molecular weight peptidic agglutinins isolated from a marine red alga Hypnea japonica. Biochim. Biophys. Acta. 873: 228–236.
  11. Hori K., Miyazawa K., Ito K. 1990. Some common properties of lectins from marine algae. Hydrobiologia. 204/205: 561–566.
  12. Hung L.D., Trinh P.T.H. 2020. Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. J. Nat. Med. 75(1): 223–231.
  13. Hung L.D., Hori K., Nang H.Q. 2009. Screening and preliminary characterization of hemag-glutinins in Vietnamese marine algae. J. Appl. Phycol. 21: 89–97.
  14. Hung L.D., Ly B.M., Trang V.T.D., Ngoc N.T.D., Hoa L.T., Trinh P.T.H. 2012. A new screening for hemagglutinins from Vietnamese marine macroalgae. J. Appl. Phycol. 24: 227–235.
  15. Hung L.D., Hirayama M., Ly B.M., Hori K. 2015. Purification, primary structure, and biological activity of high-mannose N-glycan-specific lectin from the cultivated. Eucheuma denticulatum. J. Appl. Phycol. 27: 1657–1669.
  16. Iwanaga S., Lee B.L. 2005. Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38: 128–150.
  17. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.
  18. Leite Y.F.M.M., Silva L.M.C.M., Amorim R.C.N., Freire E.A., Jorge D.M.M., Grangeiro T.B. 2005. Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biochim. Biophys. Acta. 1724(1-2): 137–145.
  19. Lehmanna F.б Tiralongob E., Tiralongo J. 2006. Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 63: 1331–1354.
  20. Liao W.R., Lin J.Y., Shieh W.Y., Jeng W.L., Huang R. 2003. Antibiotic activity of lectins from marine algae against marine vibrios. J. Ind. Microbiol. Biotechnol. 30: 433–439.
  21. Lima M.E.P., Carneiro M.E., Nascimento A.E., Grangeiro T.B., Holanda M.L., Amorim R.C.N. 2005. Purification of a lectin from the marine red alga Gracilaria cornea and its effects on the Cattle Tick Boophilus microplus (Acari: Ixodidae). J. Agric. Food Chem. 53: 6414–6419.
  22. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.
  23. Mandal C., Mandal C. 1990. Sialic acid binding lectins. Experientia. 46: 433–441.
  24. Mu J., Hirayama M., Sato Y., Morimoto K., Hori K. 2017. A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Mar. Drugs. 15(8): 255.
  25. Okamoto R., Hori K., Miyazawa K., Ito K. 1990. Isolation and characterization of a new hemagglutinin from the red alga Gracilaria bursa-pastoris. Experientia. 46(9): 975–977.
  26. O'Keefe B.R., Giomarelli B., Barnard D.L., Shenoy S.R., Chan P.K.S., McMahon J.B. 2010. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein Griffithsin against emerging viruses of the family Coronaviridae. J. Virol. 84(5): 2511–2521.
  27. Sato Y., Morimoto K., Hirayama M., Hori K. 2011a. High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem. Biophys. Res. Com. 405(2): 291–296.
  28. Sato Y., Hirayama M., Morimoto K., Yamamoto N., Okuyama S., Hori K. 2011b. High mannose-binding lectin with preference for the cluster of α1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J. Biol. Chem. 286(22): 19446–19458.
  29. Sato Y., Morimoto K., Kubo T., Sakaguchi T., Nishizono A., Hirayama M., Hori K. 2015. Entry inhibition of influenza viruses with high mannose binding lectin ESA-2 from the red alga Eucheuma serra through the recognition of viral hemagglutinin. Mar. Drugs. 13(6): 3454–3465.
  30. Schauer R., Kelm S., Reuter G., Roggentin P., Shaw L. 1995. In: Biology of the Sialic Acids. Boston, MA: Springer. Pp. 7–67.
  31. Schultze B., Gross H.J., Brossmer R., Herrler G. 1991. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 65(11): 6232–6237.
  32. Sharon N., Lis L. 1989. Lectins as cell recognition molecules. Science. 246(4927): 227–234.
  33. Sharon N., Lis H. 2003. In: Lectins. 2nd ed. Dordrecht, The Netherlands: Kluwer Acad. Publ. 450 p.
  34. Sohrab S.S., Suhail M., Kamal M.A., Ahmad F., Azhar E.I. 2020. The emergence of human pathogenic Coronaviruses: Lectins as antivirals for SARS-CoV-2. Curr. Pharm. Des. 26(41): 5286–5292.
  35. Suzuki Y. 2005. Sialobiology of influenza: Molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull. 28(3): 399–408.
  36. Tsuji T., Yamamoto K., Irimura T., Osawa T. 1981. Structure of carbohydrate unit A of porcine thyroglobulin. J. Biochem. 195(3): 691–699.
  37. Unemo M., Aspholm-Hurtig M., Ilver D., Bergstrom J., Boren T., Danielsson D., Susann T. 2005. The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J. Biol Chem. 280(15): 15390–15397.
  38. Van den Eijnden D.H., Joziasse D.H. 1993. Enzymes associated with glycosylation. Curr. Opin. Struct. Biol. 3: 711–721.
  39. Wopereis S., Lefeber D.J., Morava E., Wevers R.A. 2006. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: A Review. Clin. Chem. 52(4): 574–600.
  40. Yamamoto K., Tsuji T., Irimura T., Osawa T. 1981. The structure of carbohydrate unit B of porcine thyroglobulin. J. Biochem. 195(3): 701–713.
  41. Zeng F.Y., Gabius H.J. 1992. Sialic Acid-Binding Proteins: Characterization, Biological Function and Application. Z. Naturforsch. C. 47(9-10): 641–653.