ISSN (print) 0868-8540, (online) 2413-5984
  • 2 of 6
Algologia 2021, 31(3): 215–227
Physiology, Biochemistry, Biophysics

Allelopathic effect of microalgae on winter wheat plants

Tsarenko P.M.1, Zaimenko N.V.2, Didyk N.P.2, Ivanytska B.O.2, Kharytonova I.P.2, Demchenko E.M.1

The results of the study of the allelopathic activity of the culture medium of two species of green and charophyte microalgae (Chlorella vulgaris Beijer. and Interfillum terricola (J.B.Petersen) Mikhailyuk et al.) to winter wheat (Triticum aestivum L.) in model pot experiments with the aim to discover of physiological mechanisms of allelopathy and finding effective and safe compounds with growth-promoting effects. The microalgae culture medium was applied in a rate of 1; 3 and 10 mL per a pot (250 mL) filled with sifted and sterilized gray podzolic soil, before sowing wheat seeds. Test plants were grown in a phytochamber under controlled conditions of light intensity, temperature and soil moisture. The number of germinated seeds was recorded from the 2nd to the 8th day after sowing. The vitality of winter wheat was evaluated at the end of the experiments using morphometric characteristics of growth (height of aboveground parts, leaf surface area, length of root system, number of lateral roots; dry matter mass of aboveground parts and roots) and content of photosynthetic pigments in leaves. At the end of the experiment, the indicators of electrical conductivity, redox potential, pH and content of nutrients in the soil were determined. The positive effect of microalgae on seed germination, growth and photosynthetic apparatus of T. aestivum plants was established. Culture medium of C. vulgaris showed a higher stimulating effect on seed germination and growth of wheat seedlings than I. terricola. The positive effect of microalgae on the photosynthetic activity of wheat and the content of organic carbon in the soil indicates the possibility of developing of biofertilizers based on them in order to improve the structural and functional organization of agroecosystems. The obtained results confirmed the prospects of C. vulgaris as a biofertilizer in crops. The allelopathic effect of I. terricola on vascular plants has been studied for the first time. The important role of indirect allelopathic mechanisms in the interactions between the studied species of microalgae and vascular plants has been established.

Keywords: Chlorella vulgaris, Interfillum terricola, allelopathic interactions, winter wheat, nutrients, soil

Full text: PDF (Rus) 421K

  1. Andrianova Yu.E., Tarchevskyi I.A. 2000. Chlorophyll and plants productivity. Moscow: Nauka. 135 p. [Андрианова Ю.Е., Тарчевский И.А. 2000. Хлорофилл и продуктивность растений. М.: Наука. 135 c.].
  2. Ardal E. 2014. Phycoremediation of pesticides using microalgae. Second cycle, A2E. Alnarp: SLU, Depart. Biosyst. Technol. (from 130101). 40 p.
  3. Bacellar Mendes L.B., Vermelho A.B. 2013. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol. Biofuels. 6: 1-152.
  4. Balan V.M., Doronin V.A., Kulyk O.H., Zmiievskyi V.M. 2014. In: Scientific works of the Institute of Bioenergy Crops and Sugar Beets. Kyiv. Pp. 14–17. [Балан В.М., Доронін В.А., Кулік О.Г., Змієвський В.М. 2014. До питання методики оцінки та добору вихідних селекційних матеріалів цукрових буряків за ознакою репродуктивної системи та життєздатності насіння. В кн.: Наукові праці Інституту біоенергетичних культур і цукрових буряків. Київ. C. 14–17].
  5. Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 6318: 1-95.
  6. Borisova E.V., Tsarenko P.M. 2004. Microalgae Culture Collection of Ukraine (IBASU-A): traditions and modern directions. Nova Hedw. 79(1–2): 127–134.
  7. Chiaiese P., Corrado G., Colla G., Kyriacou M.C., Rouphael Y. 2018. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 9: 1782.
  8. Crouzet O., Consentino L., Petraud J. P., Marrauld C., Aguer J.-P. 2019. Soil photosynthetic microbial communities mediate aggregate stability: influence of cropping systems and herbicide use in an agricultural soil. Front. Microbiol. 10(1319): 1-15.
  9. Dellagreca M., Zarrelli A., Fergola P., Cerasuolo M., Pollio A., Pinto G. 2010. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modeling. J. Chem. Ecol. 36: 339-349.
  10. Ettl H., Gärtner G. 2014. Syllabus der Boden-, Luft- und Flechtenalgen. 2nd ed. Munich: Spektrum Akad. Verlag. 773 p.
  11. Hastings K.L., Smith L.E., Lindsey M.L., Blotsky L.C., Downing G.R., Zellars D.Q., Downing J.K., Corena-McLeod M. 2014. Effect of microalgae application on soil algal species diversity, cation exchange capacity and organic matter after herbicide treatments. F1000Research. 3: 281.
  12. Hiscox J.D., Israelstam C.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57: 1332–1334.
  13. Hollerbakh M.M., Shtina E.A. 1969. Soil algae. Leningrad: Nauka. 228 p. [Голлербах М.М., Штина Э.А. 1969. Почвенные водоросли. Л.: Наука. 228 с.].
  14. Kirpenko N.Y. 2013. Allelopathic interaction of freshwater algae. Kyiv: Naukova Dumka. 255 p. [Кирпенко Н.И. 2013. Аллелопатическое взаимовлияние пресноводных водорослей. Киев: Наук. думка. 255 с.].
  15. Korkhovoy V., Tsarenko P., Blume Y. 2016. Geneticaly engineered microalgae for enhanced biofuel production. Curr. Biotechnol. 5(4): 256–265.
  16. Kostikov I.Yu., Romanenko P.O., Demchenko E.M., Darienko T.M., Mikhailiuk T.I., Rybchinsky O.V., Solonenko A.M. 2001. Soil algae of Ukraine (history and methods of study, system, flora conspect). Kyiv: Fitosotsiotsentr. 300 p. [Костіков І.Ю., Романенко П.О., Демченко Е.М., Дарієнко Т. М., Михайлюк Т.І., Рибчинський О.В., Солоненко А.М. 2001. Водорості ґрунтів України (історія та методи дослідження, система, конспект флори). Київ: Фітосоціоцентр. 300 с.].
  17. Mikhailyuk T.I., Sluiman H., Massalski A., Mudimu O., Demchenko E., Kondratyuk S., Friedl T. 2008. New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J. Phycol. 44: 1586-1603.
  18. Modern methods in allelopathic research: Methodical manual. 2021. Ed. N.V. Zaimenko. Kyiv: Lira-K. 200 p. [Сучасні методи в алелопатичних дослідженнях: Методичний посібник. 2021. За ред. Н.В. Заіменко. Київ: Ліра-К. 200 с.].
  19. Muzafarov A.M., Taubaev T.T. 1984. Chlorella. Tashkent: FAN. 132 p. [Музафаров А.М., Таубаев Т.Т. 1984. Хлорелла. Ташкент: ФАН. 132 с.].
  20. Nichols K. 2020. Microalgae as a beneficial soil amendment. Arizona: MyLand Compani LLC. 22 p.
  21. Pecheneva S.Ia. 1998. Agrochemical analysis methods. Havrysh. 4: 24–26. [Печенева С.Я. 1998. Методы агрохимического анализа. Гавриш. 4: 24–26].
  22. Rindi F., Mikhailyuk T.I., Sluiman H.J., Friedl T., López-Bautista J.M. 2011. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol. Phylog. Evol. 58: 218-231.
  23. Rinkis H.Ia., Nollendorf V.F. 1982. Balanced nutrition of plants with macro- and microelements. Riga: Zynatne. 202 p. [Ринькис Г.Я., Ноллендорф В.Ф. 1982. Сбалансированное питание растений макро- и микроэлементами. Рига: Зинатне. 202 c.].
  24. Sakevych O.I., Usenko O.M. 2008. Allelopathy in hydroecosystems. Kyiv. 342 p. [Сакевич О.Й., Усенко О.М. 2008. Алелопатія в гідроекосистемах. Київ. 342 с.].
  25. Stirk W.A, van Staden J., Novák O., Doležal K., Strnad M., Dobrev P.I., Sipos G., Ördög V., Bálint P. 2011. Changes in endogenous cytokinin concentrations in chlorella (Chlorophyceae) in relation to light and the cell cycle. J. Phycol. 47(2): 291–301.
  26. Stirk W.A., Bálint P., Tarkowská D., Novák O., Strnad M., Ördög V., van Staden J. 2013. Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiol. Biochem. 70: 348–353.
  27. Tsarenko P.M. 1990. Brief manual of chlorococcal algae of Ukrainian SSR. Kyiv: Naukova Dumka. 208 p. [Царенко П.М. 1990. Краткий определитель хлорококковых водорослей Украинской ССР. Киев: Нaук. думка. 208 с.].
  28. Tsarenko P., Borysova O., Blume Ya. 2016. High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A (Ukraine). Oceanol. Hidrobiol. Stud. 73(1): 79–85.
  29. Uysal Ö., Ozdemir F., Ekinci K. 2015. Evaluation of microalgae as microbial fertilizer. Europ. JSD. 4: 77–82.
  30. Win T.T., Barone G.D., Secundo F., Fu P. 2018. Algal Biofertilizers and Plant Growth Stimulants for Sustainable Agriculture. Ind. Biotechnol. 14: 203–211.
  31. Zolotarova O.K., Shniukova Ye.I., Sivash O.O., Mykhailenko N.F. 2008. Prospects for microhydrogen growth in biotechnology. Kyiv: Alterpress. 234 p. [Золотарьова О.К., Шнюкова Є.І., Сиваш О.О., Михайленко Н.Ф. 2008. Перспективи використання мікроводоростей у біотехнології. Київ: Альтерпрес. 234 с.].