Monoraphidium sp. IBASU-A 574 (Selenastraceae, Chlorophyta) - a promising producer of biomass for bioenergy

Authors

Tsarenko P.M.1*, Borysova O.V.1, Kharkhota M.A.2, Zelena L.B.2, Konischuk M.O.1, Burova O.V.1, Blume Ya.B.3
1 M.G. Kholodny Institute of Botany NAS of Ukraine, 2 Tereschenkivska Str., Kyiv 01601, Ukraine
2 D.K. Zabolotny Institute of Microbiology and Virology NAS of Ukraine 154 Acad. Zabolotny Str., Kyiv 03680, Ukraine
3 Institute of Food Biotechnology and Genomics of NAS of Ukraine, 2а Osypovskogo Str., Kyiv, 04123, Ukraine

Section:

Applied Algology

Issue:

Vol. 32 No. 1 (2022)

Pages:

88–104

DOI:

https://doi.org/10.15407/alg32.01.088

Abstract

The present studies were carried out to evaluate a potential biofuel application of the native strain Monoraphidium sp. IBASU-A 574 (Selenastraceae, Chlorophyta) adapted to the temperate zone climatic conditions. This strain was isolated from a small freshwater lake situated in Kyiv-city (Ukraine) by the reached culture method for obtaining desired strains of different species with high growth rate. It was identified based on its morphological characterization under light microscopy and 18S rRNA sequence analysis. Its culture’s growth, kinetic characteristics (specific growth rate and productivity) and biological peculiarities of the investigated strain were studied in comparison with the well-known biomass producer Chlorella vulgaris Beijer. CALU 157 under the same autotrophic cultivating conditions with using the modified Tamiya medium. It was established an active growth of Monoraphidium sp. IBASU-A 574 which was practically equal to the well-known producer and characterized by following parameters: a maximum cell density of 248 ∙ 10-6 cells ∙ mL-1, the specific growth rate of 1.4 days-1 and productivity of 72.5 ∙ 10-6 cells ∙ mL-1 ∙ days-1. The results of gas-liquid chromatography analysis showed that a fatty acid profile of this microalga included a complex of palmitic (C16: 0), oleic (C18: 1), linoleic (C18: 2) and linolenic (C18: 3) major fatty acids with suitable proportion for developing biodiesel feedstocks. Moreover, there was considerable variation in formation of its fatty acid composition depending on the stage of growth, that confirmed the necessity for such studies to determine both optimal time for growing algae and gaing maximum yield of target products. Thus, Monoraphidium sp. IBASU-A 574 was found to be the promising producer of biomass for bioenergetic industry due to obtained data of its growth characteristics and suitable fatty acid profile of lipids.

Keywords:

microalgae, Monoraphidium sp., strain, collection IBASU-A, lipids, fatty acid profile, biodiesel

References

Algal culturing techniques. 2005. Ed. Andersen R.A. Amsterdam: Elsevier Acad. Press. 578 p.

Amin S. 2009. Review on biofuel oil and gas production from microalgae. Energy Convers. Manag. 50: 1834–1840. https://doi.org/10.1016/j.enconman.2009.03.001

Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algae species. Univ. Texas Publ. 6318: 1–95.

Bogen C., Al-Dilami A., Albersmeier A., Wichmann J., Grundmann M., Rupp O., Lauersen K.J., Blifernez-Klassen O., Kalinowski J., Goesmann A., Mussgnug J.H., Kruse O. 2013а. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics 14(1): 926–930. https://doi.org/10.1186/1471-2164-14-926 https://www.ncbi.nlm.nih.gov/pubmed/24373495 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890519

Bogen C., Klassen V., Wichmann J., La Russa M., Doebbe A., Grundmann M., Uronen P., Kruse O., Mussgnug J.H. 2013b. Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Biores. Technol. 133: 622–626. https://doi.org/10.1016/j.biortech.2013.01.164 https://www.ncbi.nlm.nih.gov/pubmed/23453981

Bohnenberger J., Crossetti L.O. 2014. Influence of temperature and nutrient content on lipid production in freshwater microalgae cultures. An. Acad. Bras. Cienc. 86(3):1239-1248. https://doi.org/10.1590/0001-3765201420130136 https://www.ncbi.nlm.nih.gov/pubmed/25211106

Borysova E.V., Tsarenko P.M. 2004. Microalgae Culture Collection of Ukraine (IBASU-A). Nova Hedw. 79(1-2): 127–134. https://doi.org/10.1127/0029-5035/2004/0079-0127

Borysova O.V., Tsarenko P.M., Konіshchuk M.O. 2014. Microalgae Culture Collection IBASU-A. Kyiv. 110 p. [Борисова О.В., Царенко П.М., Коніщук О.М. 2014. Колекція культур мікроводоростей IBASU-A. Київ. 110 с.].

Borysova O.V., Tsarenko P.M., Konishchuk M.O. 2016. Microalgae Culture Collection (IBASU-A) as an object of national heritage of Ukraine. Ukr. Bot. J. 73(5): 453–460. [Борисова О.В., Царенко П.М., Коніщук М.О. 2016. Колекція культур мікроводоростей (IBASU-A) як об'єкт національного надбання України. Укр. бот. журн. 73(5): 453–466]. https://doi.org/10.15407/ukrbotj73.05.453

Brennan L., Owende P. 2010. Biofuel from algae - A review of technologies for production, processing and extractions of biofuels and co-products. Renew. Sust. Energy Rev. 14: 557–577. https://doi.org/10.1016/j.rser.2009.10.009

Chaichalerm S., Pokethitiyook P., Yuan W., Meetam M., Sritong K., Pugkaew W., Kungvansaichol K., Kruatrachue M., Damrongphol P. 2012. Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media. Appl. Energy. 89(1): 296–302. https://doi.org/10.1016/j.apenergy.2011.07.028

Chaudhary R., Khattar J.I.S., Sing D.P. 2014. Microalgae as feedstock for biofuel, biomass yield, lipid content and fatty acid composition as selection criteria. Int. J. Power Renew. Energy Syst. 1: 62–69.

Che R., Huang L., Xu J-W., Zhao P., Li T., Ma H., Yu X. 2017. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10. Biores. Technol. 227: 324–334. https://doi.org/10.1016/j.biortech.2016.12.017 https://www.ncbi.nlm.nih.gov/pubmed/28042988

Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 https://www.ncbi.nlm.nih.gov/pubmed/17350212

Deng X., Yajun L., Fei X. 2009. Microalgae: A promising feedstock for biodiesel. Afr. J. Microbiol. Res. 3(13): 1008–1014.

Diaz G.C., Cruz Y.R., Carlis R.G., de Paula R.C.V., Aranda D.A.G., Dario M.A.G., Marassi G.S., Furtado N.C. 2015. Cultivation of microalgae Monoraphidium sp., in the plant pilot the Grant Valle Bio Energy, for biodiesel production. Nat. Sci. 7: 370–378. https://doi.org/10.4236/ns.2015.77040

Figuera A., Reyes Y., González R., Paula R., Basto L., Aranda D. 2016. Monitoring the consumption of Monoraphidium sp. microalgae: Characterization of algal biomass produced. Revista Latinoamericano Biotech. Ambient. Algal. 7(2): 42–56. https://doi.org/10.7603/s40682-016-0004-y

Getachew D., Mulugeta K., Gemechu G., Murugesan K. 2020. Values and drawbacks of biofuel production from microalgae. Appl. Biotechnol. 7(1): 1–6.

Holbrook G., Dayidson Z., Tatara R.A., Ziemer N.L., Rosentrater K.R., Grayburn S. 2014. Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: Cultivation and fuel characteristics. Appl. Energy. 131: 386–393. https://doi.org/10.1016/j.apenergy.2014.06.043

Knothe G. 2009. Improving biodiesel fuel properties by modifying fatty esters composition. Energy Environ. Sci. 2: 759–766. https://doi.org/10.1039/b903941d

Krienitz L,, Wirth M. 2006. The high content of polyunsaturated fatty acids in Nannochloropsislimnetica (Eustigmatophyceae) and its implication for food webinteractions, freshwater aquaculture and biotechnology. Limnology. 6: 204–210. https://doi.org/10.1016/j.limno.2006.05.002

Kvitko K.V., Borshchevskayan N.N., Chunaev A.S., Tugarinov V.V. 1983. In: Cultivation of algal collection strain. Leningrad: Leningrad State Univ. Publ. 28–56. [Квитко К.В., Борщевская Т.Н., Чунаев А.С., Тугаринов В.В. 1983. Петергофская коллекция штаммов водорослей. В кн.: Культивирование коллекционных штаммов водорослей. Л.: Изд-во Ленинград. ун-та. С. 28–56]. https://doi.org/10.2307/2392385

Lang L., Hodac L., Friedl T., Feussner I. 2011. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 11(1): 124. https://doi.org/10.1186/1471-2229-11-124 https://www.ncbi.nlm.nih.gov/pubmed/21896160 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175173

Lari Z., Moradi-Kheibari N., Ahmadzadeh H., Abrishamchi P., Moheimani N.R., Murry M.A. 2016. Bioprocesses engineering of microalgae to optimize lipid production through nutrient management. J. Appl. Phycol. https://doi.org./10.1007/s 10811–016-0884-6

Li D., Zhao Y., Ding W., Zhao P., Xu J.-W., Li T., Ma H., Yu X. 2017. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatoin and photoinduction. Biores. Technol. 23: 104–112. https://doi.org/10.1016/j.biortech.2017.03.114 https://www.ncbi.nlm.nih.gov/pubmed/28365337

Massimi R., Kirkwood A.E. 2016. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel. PeerJ peerj. 2396(12). https://doi.org/10.7717/peerj.2396 https://www.ncbi.nlm.nih.gov/pubmed/27635353 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012288

Mata T.M., Martins A.A., Caetano N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust., Energ. Rev. 14: 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Methods on physiological and biochemical studies of microalgae in hydrobiological practice. Ed. A.V. Topachevsky 1975. Kyiv: Naukova Dumka. 247 p. [Методы физиолого-биохимического исследования водорослей в гидробиологической практике. 1975. Под ред. А.В. Топачевского. Киев: Наук. думка. 247 с].

Nascimento I.A., Marques S.S.I., Cabanelas I.T.D., Pereira S.A., Druzian J.I., de Souza C.O., Vich D.V., de Carvalho G.C., Nascimento M.A. 2013. Screening microalgae strains for biodiesel production and estimation of fuel quality based on fatty acid profiles as selective criteria. Bioenergy Res. 6: 1–13. https://doi.org/10.1007/s12155-012-9222-2

Patidar S.K., Mitra M., George B., Soundarya R., Mishra S. 2014. Potential Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode. Biores. Technol. 172: 32–40. https://doi.org/10.1016/j.biortech.2014.08.070 https://www.ncbi.nlm.nih.gov/pubmed/25233474

Řezanka T., Nedbalová L., Lukavský J., Střížek A., Sigler K. 2017. Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. Algal Res. 22: 160–165. https://doi.org/10.1016/j.algal.2016.12.017

Sathya S., Srisudha S. 2013. Isolation and identification of freshwater microalgae strain - potential for biofuel production. Int. J. Recent Sci. Res. 4(9): 1432–1437.

Sehgal A., Goswami K., Pal M., Chikkaputtaiah C., Chetia P., Boruah H.P.D. 2019. Morpho-taxonomic, genetic, and biochemical characterization of freshwater microalgae as potential biodiesel feedstock. Biotech. 9(4): 1–17. https://doi.org/10.1007/s13205-019-1664-1 https://www.ncbi.nlm.nih.gov/pubmed/30944784 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419688

Sheehan J., Dunahay T.G., Beneman J.R., Roessler P.G. 1998. A look back at the U.S. Department of Energy's Aquatic Species Program: biodiesel from algae. Close-our report. Golden, CO: NREL. 296 p. https://doi.org/10.2172/15003040

Shrivastav A., Mishra S.K., Suh W.I., Farooq W., Moon M., Kim T.-H., Kumar K., Choi G.-G., Park M.S., Yang J.-W. 2015. Characterization of newly isolated oleaginous microalga Monoraphidium sp. for lipid production under different conditions. Algal. Res. 12: 289–294. https://doi.org/10.1016/j.algal.2015.08.015

Sorochinsky B., Blume Ya., Sozinov O. 2010. Liquid biofuels: current state and tendencies. Kyiv: DIA. 116 p. [Сорочинський Б.В., Блюм Я.Б., Созінов О.О. 2010. Рідкі біопалива: сучасний стан та тенденції. Київ: ДІА. 116 с.].

Spolaore P., Joannis-Cassan C., Duran E., Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87–96. https://doi.org/10.1263/jbb.101.87 https://www.ncbi.nlm.nih.gov/pubmed/16569602

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197 https://www.ncbi.nlm.nih.gov/pubmed/24132122 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312

Trenkenshu R.P. 2005. Simplest models of microalgal growth. Batch culture. Mar. Ecol. 67: 89–97. [Тренкеншу Р.П. 2005. Простейшие модели роста микроводорослей. Периодическая культура. Экол. моря. 67: 89–97]. https://doi.org/10.1097/01.psy.0000149256.81953.49 https://www.ncbi.nlm.nih.gov/pubmed/15673629

Tsarenko P.M., Borysova O.V., Blume Ya.B. 2011. Microalgae as bioenergetic object: IBASU-A collection species - perspective producers of biomass as the source of raw stuff for biofuel. Visn. Nat. Acad. Sci. Ukraine. 5: 49–54. [Царенко П.М., Борисова О.В., Блюм Я.Б. 2011. Мікроводорості як об'єкт біоенергетики. Види колекції IBASU-A - перспективні продуценти біомаси як джерела сировини для біопалива. Вісн. НАН України. 5: 49–54].

Tsarenko P., Borysova O., Blume Ya. 2016. High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A (Ukraine). Oceanol. Hydrobiol. Stud. 45(1): 79–85. https://doi.org/10.1515/ohs-2016-0008

Tsarenko P.M., Borysova O.V., Korkhovyi V.I., Blume Ya.B. 2020. High-efficiency Ukrainian strains of microalgae for biodiesel fuel production (Overview). Open Agricult. J. 14: 9–218. https://doi.org/10.2174/1874331502014010209

Tsarenko P.M., Konishchuk M.O., Korkhovoy V.I., Kostikov I.Yu., Blume Ya.B. 2017. Fatty acid composition of cocoid green algae as a basis for energy and primary products potential. 1. Chlorella and Acutodesmus-like microalgae (Chlorophyta). Int. J. Algae. 19(4): 367–384. https://doi.org/10.1615/InterJAlgae.v19.i4.70

White T.J., Bruns T., Lee S.J.W.T., Teylor J. 1990. Application and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. London: Acad. Press. 18(1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 https://www.ncbi.nlm.nih.gov/pubmed/1696192s

Woertz I., Feffer A., Lundquist T., Nelson Y. 2009. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. Environ. Eng. 135(11): 1115–1122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000129

Wu L., Xu L., Hu C. 2015. Screening and characterization of oleaginous microalgal species from North Xinjiang. J. Microbiol. Biotechnol. 25(6): 910–917. https://doi.org/10.4014/jmb.1411.11075 https://www.ncbi.nlm.nih.gov/pubmed/25639722s

Yang X., Liu P., Hao X., Shi S., Zhang S. 2012. Characterization and identification of freshwater microalgal strain toward biofuel production. BioResources. 7(1): 686–695. https://doi.org/10.15376/biores.7.1.686-695

Yu X., Zhao P., He C., Li J., Tang X., Zhou J., Huang Z., Zhou J., Huang Z. 2012. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Biores. Technol. 121: 256–262. https://doi.org/10.1016/j.biortech.2012.07.002 https://www.ncbi.nlm.nih.gov/pubmed/22858494s

Zhao Y., Li D., Ding K., Che R., Xu J.-W., Zhao P., Li T., Ma H., Yu X. 2016. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. Biores. Technol. 211: 669–676. https://doi.org/10.1016/j.biortech.2016.03.160 https://www.ncbi.nlm.nih.gov/pubmed/27058402s

Zhao P., Yu X., Li J., Tang X., Huang Z. 2014. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J. Biosci Bioeng. 118(1):72-77. https://doi.org/10.1016/j.jbiosc.2013.12.014 https://www.ncbi.nlm.nih.gov/pubmed/24491914s

Zhu L. 2015. Microalgal culture strategies for biofuels production: A review. Biofuels, Bioprod. Bioref. 9: 801–814. https://doi.org/10.1002/bbb.1576

Zolotaryova O.K., Schnyukova E.L., Sivash O.O., Mykhailenko N.P. 2008. Perspectives of the use of microalgae in biotechnology. Kyiv: Altepress. 234 p. [Золотарьова О.К., Шнюкова Є.К., Сиваш О.О., Михайленко Н.Ф. 2008. Перспективи використання мікроводоростей у біотехнології. Київ: Альтерпрес. 234 с.]

Citation

Tsarenko P.M., Borysova O.V., Kharkhota M.A., Zelena L.B., Konischuk M.O., Burova O.V., Blume Ya.B. 2022. Monoraphidium sp. IBASU-A 574 (Selenastraceae, Chlorophyta) - a promising producer of biomass for bioenergy. Algologia. 32(1): 88–104. https://doi.org/10.15407/alg32.01.088