Features of formation and functioning of phytoplankton of small reservoirs

Authors

Shelyuk Yu.S.*
Ivan Franko Zhytomyr State University, Department of Botany, Bioresources and Biodiversity Conservation, 40 V. Berdychivska Str., Zhytomyr 10002, Ukraine

Section:

Flora and Geography

Issue:

Vol. 32 No. 2 (2022)

Pages:

152–166

DOI:

https://doi.org/10.15407/alg32.02.152

Abstract

Regularities of phytoplankton formation and functioning of small reservoirs are established. Chlorophyta (32.7% of the total list of species) and Bacillariophyta (24.6%) were found to be predominant in species richness. Cyanobacteria species have been found to increase as the area and volume of reservoirs increase, and Euglenozoa is ahead of them in smaller bodies of water. The main abiotic parameters that determine the changes in the structural parameters of phytoplankton of the studied reservoirs are determined. The main differences in the structural and functional characteristics of phytoplankton of small reservoirs built on Polissya rivers in comparison with large Dnieper and Volga ones have been clarified.

Keywords:

phytoplankton, number, biomass, primary products, small reservoirs, trophy level

References

Gold V.M. 1996. Ecological physiology of algae. Photosynthesis and respiration. In: Ecological and physiological studies of algae and their importance for assessing the state of natural waters. Yaroslavl: YaSTU. Pp. 129–130. [Гольд В.М. 1996. Экологическая физиология водорослей. Фотосинтез и дыхание. В кн.: Эколого-физиологические исследования водорослей и их значение для оценки состояния природных вод. Ярославль: ЯГТУ. С. 129–130].

Holz J.S., Hoaglana K.D., Spawn R.L., Popp A., Andersen J.L. 1997. Phytoplankton community response to reservoir aging. 1968–1992. Hydrobiologia. 346(3): 183–192. https://doi.org/10.1023/A:1002978302479

Kimmel B.L., Groeger A.W. 1984. Factors controlling primary productionin lakes and reservoirs: a perspective. In: North American Lake Management Society. Washington: U.S. Environ. Protect. Agency. Pp. 277–281. https://doi.org/10.1080/07438148409354524

Kozhova O.M., Erbaeva E.A. 1992. Methodology for predicting the hydrobiological regime of reservoirs in the taiga zone. In: Environmental studies of Baikal and the Baikal region. Pt 2. Irkutsk: Publ. House Irkutsk Univ. Pp. 4–11. [Кожова О.М., Ербаева Э.А. 1992. Методология прогнозирования гидробиологического режима водохранилищ таежной зоны. В кн.: Экологические исследования Байкала и байкальского региона. Ч. 2. Иркутск: Изд-во Иркут. ун-та. С. 4–11].

Krakhmalnyi A.F. 1990. Phytoplankton of Prypiat and its tributaries under conditions of large-scale reclamation of the region: PhD (Biol.) Abstract. Kyiv. 24 p. [Крахмальный А.Ф. 1996. Фитопланктон Припяти и ее притоков в условиях крупномасштабной мелиорации региона: Автореф. дис. … канд. биол. наук. Киев. 24 с.].

Linnik P.N., Zhezherya T.P., Shelyuk Yu.S., Zhezherya V.A. 2016. Peculiarities of chemical elements migration and phytoplankton development in the reservoirs of the Teterev River. Hydrobiol. J. 52(5): 93–107. https://doi.org/10.1615/HydrobJ.v52.i5.100

Maistrova N.V. 2003. Succession of phytoplankton of the Kaniv reservoir: PhD (Biol.) Abstract. Kyiv. 24 p. [Майстрова Н.В. 2003. Сукцесія фітопланктону Канівського водосховища: Автореф. дис. … канд. біол. наук. Київ. 21 с.].

Margalef R. 1975. Typology of reservoirs. Verh. Int. Ver. Limnol. 19(3): 1847–1848. https://doi.org/10.1080/03680770.1974.11896256

Methods of hydroecological research of surface waters. 2006. Ed. V.D. Romanenko. Kyiv: LOGOS. 408 p. [Методи гідроекологічних досліджень поверхневих вод. 2006. За ред. В.Д. Романенка. Київ: ЛОГОС. 408 c.].

Mineeva N.M. 2009. Primary production of plankton in the Volga reservoirs. Yaroslavl: Printhouse. 279 p. [Минеева Н.М. 2009. Певичная продукция планктона в водохранилищах Волги. Ярославль: Принтхаус. 279 с.]. https://doi.org/10.1306/13161223M913372

Mokrytsky G.P. 1999. Water supply system of Zhytomyr. Zhytomyr: Volyn. 96 p. [Мокрицький Г.П. 1999. Водопровід Житомира. Житомир: Волинь. 96 с.].

Odum Yu. 1986. Ecology. Moscow: Mir. 740 р. [Одум Ю. 1986. Экология. М.: Мир. 740 с.].

Okhapkin A.G. 1997. Structure and succession of phytoplankton during regulation of river flow (on the example of the Volga river and its tributaries): Dr. Sci. (Biol.) Abstract. St. Petersburg. 48 р. [Охапкин А.Г. 1997. Структура и сукцессия фитопланктона при зарегулировании речного стока (на примере р. Волги и ее притоков): Автореф. дис. … д-ра биол. наук. СПб. 48 с.].

Omar W.M., Makhlough A. 2014. Water quality of tropical reservoir based on spatio-temporal variation in phytoplankton composition and physico-chemical analysis. Int. J. Environ. Sci. Technol. 12(7): 1735–1472. https://doi.org/10.1007/s13762-014-0610-3

Pantle R., Buck H. 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasser. 96(18): 604.

Priymachenko A.D. 1981. Phytoplankton and primary production of the Dnieper and Dnieper reservoirs. Kyiv: Naukova Dumka. 277 p. [Приймаченко А.Д. 1981. Фитопланктон и первичная продукция Днепра и днепровских водохранилищ. Київ : Наук. думка. 277 с.].

Reynolds C.S. 1999. Phytoplankton assemblages in reservoirs. In: Theoretical reservoir ecology and its application. Sao Carlos: Backhuys Publ. Pр. 439–456.

Scherbak V.I. 2000. Structural and functional characteristics of the Dnieper phytoplankton: Dr. Sci. (Biol.) Abstract. Kyiv. 32 p. [Щербак В.І. 2000. Структурно-функціональна характеристика Дніпровського фітопланктону: Автореф. дис. … д-ра біол. наук. Київ. 32 с.].

Schetagne R. 1992. Water quality modifications afte impoundment of some large northern reservoirs. Advan. Limnol. 40: 223–229.

Shelyuk Yu.S. 2017. Comparative assessment of the methods of determining phytoplankton production in water bodies differing in their trophic status and water velocity. Hydrobiological J. 53(6): 37–48. https://doi.org/10.1615/HydrobJ.v53.i6.40

Shelyuk Yu.S. 2019. Phytoplankton development in small reservoirs. In: VI International Conference advances in modern phycology (Kyiv, 15–17 May, 2019). Kyiv. Рр. 97–98.

Shelyuk Yu.S. 2020. Formation of energy fluxes in small reservoirs. Hydrobiol. J. 56(2): 17–32. https://doi.org/10.1615/HydrobJ.v56.i2.20

Shelyuk Y.S., Astahova L.Y. 2021. Phytoplankton succession in the anthropogenic and climate ecological transformation of freshwater ecosystems. Biosyst. Divers. 29(2): 119–128. https://doi.org/10.15421/012116

Sládeček V. 1973. System of water quality from the biological point of view. Ergebn. Limnol. 7: 1–128.

Soballe D.M., Bachmann R.W. 1984. Influence of reservoir transit on riverine algae transport and abudans. Can. J. Fish. Aquat. Sci. 41(12): 1803–1813. https://doi.org/10.1139/f84-221

Straskraba M., Brazka P., Brande Z. 1990. Hepothesis on reservoir again arch. Hydrobiol. Beih. Ergebn. Limnol. 33: 803–806.

Water Fund of Ukraine: Artificial reservoirs and ponds. 2014. Ed. V.K. Khilchevsky, V.V. Greben. Kyiv: Inter-Press LTD. 164 p. [Водний фонд України: Штучні водойми − водосховища і ставки. 2014. За ред. В.К. Хільчевського, В.В. Гребеня. Київ : Інтер-прес ЛТД. 164 c.].

Citation

Shelyuk Yu.S. 2022. Features of formation and functioning of phytoplankton of small reservoirs. Algologia. 32(2): 152–166. https://doi.org/10.15407/alg32.02.152