Structural and functional characteristics of phytoplankton, algal mats, detritus and water quality under main abiotic factors in urban ponds (case study of urban settlement Hostomel, Bucha district, Kyiv Region, Ukraine)

Report І. Species and taxonomic composition, ecological diversity of phytoplankton and filamentous algal mats characteristics under main abiotic factors

Authors

Shcherbak V.I.*, Semeniuk N.Ye.
Institute of Hydrobiology of the NAS of Ukraine, 12 Prosp. Heroyiv Stalingrada, Kyiv 04210, Ukraine

Section:

Ecology, Cenology, Conservation of Algae and their Role in Nature

Issue:

Vol. 33 No. 1 (2023)

Pages:

22-47

DOI:

https://doi.org/10.15407/alg33.01.022

Abstract

The paper considers species and taxonomic composition of phytoplankton and algal mats in ponds of Hostomel urban settlement under effect of main abiotic factors. The research was carried out in May 2021. The ponds under study are shallow and the photic zone occupies the entire water column. The dissolved oxygen content was high. According to nutrient content the ponds are eutrophic. Planktonic algal communities were marked by high diversity. The identified algae referred to 8 phyla, 13 classes, 29 orders, 49 families, 87 genera and 134 species, represented by 136 infraspecific taxa. The floristic diversity at the phylum level was mainly formed by Chlorophyta, Bacillariophyta and Cyanobacteria, at the class level – Chlorophyceae, Bacillariophyceae and Cyanophyceae, at the order level – Sphaeropleales, Euglenida, Chloreallales and Bacillariales, at the family level – Scenedesmaceae, Euglenidae, Bacillariaceae, Selenastraceae and Chlorellaceae, at the genus level – Desmodesmus, Nitzchia, Monoraphidium, Trachelomonas and Euglena. According to biotopic preference planktonic and planktonic-benthic forms prevailed. In Pond ІІІ, floating algal mats were observed. They appeared when benthic communities composed of Charophyta, Bacillariophyta, Chlorophyta and Euglenozoa rose to the water surface. Their cell count reached 28168–368149 thousand cells∙m–2, biomass – 21–362 g ∙ m–2. Algal mats caused a local negative effect due to water column shadowing. High diversity of algal communities makes it possible for pond ecosystems to function even under human impact.

Keywords:

phytoplankton, species and taxonomic composition, ecological diversity, lamentous algal mats, abiotic factors, urban ponds

References

Barinova S.S., Belous E.P., Tsarenko P.M. 2019. Algal indication of water bodies in Ukraine: methods and perspectives. Khayfa, Kyiv: Izd-vo Un-ta Khayfy. 367 p. [Баринова С.С., Белоус Е.П., Царенко П.М. 2019. Альгоиндикация водных объектов Украины: методы и перспективы. Хайфа, Киев: Изд-во Ун-та Хайфы. 367 с.]. [Rus.]

Burchardt L., Messyasz B., Stępniak A. 2006. Diversity of phytoplankton community in Borusa and Grundella ponds. Teka Komisji Ochrony Kształtowania Środowiska Przyrod. 3: 35–40.

Casa V., Brancolini F., Mielnicki D., Mataloni G. 2020. Fish-killing diatom bloom in an urban recreational pond: and index case for a global warming scenario ? Oecol. Austral. 24(4): 878–889. https://doi.org/10.4257/oeco.2020.2404.11

Céréghino R., Boix D., Cauchie H.-M., Martens K., Oertli B. 2014. The ecological role of ponds in a changing world. Hydrobiologia. 723: 1–6. https://doi.org/10.1007/s10750-013-1719-y

De Meester L., Declerck S., Stocks R., Louette G., Van De Meutter F., De Bie T., Michels E., Brendonck L. 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv: Mar. Fresh. Ecosyst. https://doi.org/10.1002/aqc.748

Downing J.A. 2010 Emerging global role of small lakes and ponds: little things mean a lot. Limnetica. 29(1): 9–24. https://doi.org/10.23818/limn.29.02

Dunker S. 2020. Imaging flow cytometry for phylogenetic and morphologically based functional group clustering of a natural phytoplankton community over 1 year in an urban pond. Cytometry. Pt A. 97A: 727–736. https://doi.org/10.1002/cyto.a.24044 https://www.ncbi.nlm.nih.gov/pubmed/32472660

Guiry M.D., Guiry G.M. 2022. AlgaeBase. World-wide electron. Publ. Nat. Univ. Ireland, Galway.

Hill M.J., Biggs J., Thornhill I., Briers. A., Gledhill D.G., White J.C., Wood P.J., Hassall Ch. 2017. Urban ponds as an aquatic biodiversity resource in modified landscapes. Global Change Biol. 23(3): 986–999. https://doi.org/10.1111/gcb.13401 https://www.ncbi.nlm.nih.gov/pubmed/27476680

Jurczak T., Wojtal-Frankiewicz A., Kaczkowski Z., Oleksińska Z., Bednarek A., Zalewski M. 2018. Restoration of a shady urban pond - The pros and cons. J. Environ. Manag. 217: 919–928. https://doi.org/10.1016/j.jenvman.2018.03.114 https://www.ncbi.nlm.nih.gov/pubmed/29674232

Kozhaeva D.K., Khabzhokov O.B., Kazanchev S.Ch. 2016. Primary production of green filamentous algae. Izv. Orenburg. gos. agrar. un-ta. 3(59): 198–206. [Кожаева Д.К., Хабжоков О.Б., Казанчев С.Ч. 2016. Первичная продукция зеленых нитчатых водорослей. Изв. Оренбург. гос. аграр. ун-та. 3(59): 198–206]. [Rus.]

Kravtsova O.V., Shcherbak V.I. 2020. Methodology of assessing the degree of the influence of anthropogenic factors on phytoplankton of urban water bodies. Hydrobiol. J. 56(5): 3–14. https://doi.org/10.1615/HydrobJ.v56.i5.10

Krivtsov V., Birkinshaw S., Yahr R., Olive V. 2021. Comparative ecosystem analysis of urban ponds: implications for synergistic benefits and potential trade-offs resulting from retrofitting of green roofs in their catchments. Int. J. Environ. Impacts. 4(4): 323–339. https://doi.org/10.2495/EI-V4-N4-323-340

Lévesque D., Pinel-Alloul B., Giani A., Kufner D.C.L., Mimouni E.-A. 2020. Are fluorometric, taxonomic and functional indicators of phytoplankton community structure linked to environmental typology of urban ponds and lakes? Inland Waters. 10(1): 71–88. https://doi.org/10.1080/20442041.2019.1678970

Lõhmus M., Balbus J. 2015. Making green infrastructure healthier infrastructure. Infect. Ecol. & Epid. 5(1): 30082. https://doi.org/10.3402/iee.v5.30082 https://www.ncbi.nlm.nih.gov/pubmed/26615823 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663195

Minelgate G., Frost P.C., Xenopoulos M.A., Stephansen D.A., Fejerskov M.L. Vollertsen J. 2020. Planktonic algae abundance and diversity are similar in urban stormwater ponds of different geographic locations and natural shallow lakes. Urban Ecosyst. 23: 841–850. https://doi.org/10.1007/s11252-020-00967-7

Oertli B., Parris K.M. 2019. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere. 10(7): e02810. https://doi.org/10.1002/ecs2.2810

Oertli B., Céréghino R., Hull A., Miracle R. 2009. Pond conservation: from science to practice. Hydrobiologia. 634: 1–9. https://doi.org/10.1007/s10750-009-9891-9

Olding D.D., Hellebust J.A., Douglas M.S.V. 2000. Phytoplankton community composition in relation to water quality and water-body morphometry in urban lakes, reservoirs, and ponds. Can. J. Fisher. Aquat. Sci. 57(10): 2163–2174. https://doi.org/10.1139/f00-176

Passport of the water object. A pond with an area of 2.31 hectares within the Gostomel settlement. 2016. Irpin. MUVG. 36 p. [Паспорт водного об'єкта. Ставок площею 2,31 га в межах смт Гостомель. 2016. Ірпін. МУВГ. 36 с.]. [Ukr.]

Peretyatko A., Teissier S., De Backer S., Triest L. 2010. Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Int. J. Lim. 46(2): 121–133. https://doi.org/10.1051/limn/2010009

Roy K., Gupta S., Nandy S.K. 2015. Checklist of commonly available phytoplankton and zooplankton genera of urban and rural ponds of Raipur, Chhattisgarh, India. World J. Zool. 10(4): 351–357.

Shcherbak V.I. 1999. Primary Production of Algae in the Dnieper and Dnieper Reservoirs. Hydrobiol. J. 35(1): 1–13. https://doi.org/10.1615/HydrobJ.v35.i1.10

Shcherbak V.I. 2000. Photosynthetic Activity of Dominant Species of the Dnieper River Phytoplankton. Hydrobiol. J. 36(2): 71–84. https://doi.org/10.1615/HydrobJ.v36.i2.60

Shcherbak V.I. 2006. Fitoplankton. In: Methods of hydroecological investigations of surface waters. Kyiv: Logos. Pp. 12–44. [Щербак В.І. 2006. Фітопланктон. В кн.: Методи гідроекологічних досліджень поверхневих вод. Київ: Лoгос. С. 12–44]. [Ukr.]

Shcherbak V.I., Semenuyk N.Ye. 2007. Classification of water bodies of urban territories in terms of phytoplankton diversity. Hydrobiol. J. 43(1): 3–18. https://doi.org/10.1615/HydrobJ.v43.i1.10

Shcherbak V.I., Semenuyk N.Ye. 2009. Use of phytoplankton for the assessment of the ecological state of water bodies of the megalopolis according to the EU Water Framework Directive - WFD (2000/60/EC). Hydrobiol. J. 45(2): 24–34. https://doi.org/10.1615/HydrobJ.v45.i2.30

Shcherbak V.I., Kravtsova O.V., Linchuk M.I. 2018. Assessment of the influence of high concentrations of nitrogen compounds on phytoplankton diversity in the ponds of the Oleksandriya natural park (the town of Bila Tserkva, Ukraine). Hydrobiol. J. 54(1): 19–32. https://doi.org/10.1615/HydrobJ.v54.i1.20

Shcherbak V., Korotetskyi V., Sydorenko O., Semeniuk N. 2016. Potential ecological hazards to the Cheremosh River posed by a diversion hydropower plant (Roztoky Settlement, Kosiv District, Ivano-Frankivsk Region, Ukraine. In: Issues and Challenges of Small Hydropower Development in the Carpathians Region (Hydrology, Hydrochemistry, and Hydrobiology of Watercourses). Uzhgorod-L'viv-Kyiv: Biol. Fac. L'viv Nat. Univ. Hydroecol. Soc. «Uzh». 195 p.

Shmidt V.M. 1980. Statistical methods in comparative floristics. Leningrad: Leningrad. univ. Press. 176 p. [Шмидт В.М. 1980. Статистические методы в сравнительной флористике. Л.: Изд-во Ленинград. ун-та. 176 с.]. [Rus.]

Starmach K. 1956. Metody botania plancton. Warszawa. 135 p.

Sultana M., Khondrek M. 2009. Assessment of phytoplankton primary productivity of two urban pond ecosystems of Bangladesh. Dhaka Univ. J. Biol. Sci. 18(2): 127–135.

Vladimirova K.S. 1978. Phytomicrobenthos of the Dnieper, ego reservoirs and the Dnieper-Bug Estuary. Kyiv: Nauk. dumka. 365 p. [Владимирова К.С. 1978. Фитомикробентос Днепра, его водохранилищ и Днепровско-Бугского лимана. Киев: Наук. думка. 365 с.]. [Rus.]

Waajen G.W.A.M., Faasen E.J., Lürling M. 2014. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. Environ. Sci. Pollut. Res. 21: 9983–9994. https://doi.org/10.1007/s11356-014-2948-y https://www.ncbi.nlm.nih.gov/pubmed/24798921

Water management passport of the reservoir with an area of 5.49 hectares on the street. On May 1, Lenina in the village of Gostomel (Stav II). 2013a. Irpin. MUVG. 24 p. [Водогосподарський паспорт водойми площею 5,49 га по вул. 1-го Травня, Леніна в смт Гостомель (Став II). 2013а. Ірпін. МУВГ. 24 с.].

Water management passport of a reservoir with a water surface area of 5.68 hectares on the street. Lenina, Vatutina, Kalinin in the village of Gostomel (Stav III). 2013b. Irpin. MUVG. 16 p. [Водогосподарський паспорт водойми площею водного дзеркала 5,68 га по вул. Леніна, Ватутіна, Калініна в смт Гостомель (Став III)]. 2013б. Ірпін. МУВГ. 16 с.].

Water management passport of the reservoir with an area of 5.72 hectares on the street. Vatutina, prov. Jubilee in the village of Gostomel (Pond IV). 2013 v. Irpin. MUVG. 15 p. [Водогосподарський паспорт водойми площею 5,72 га по вул. Ватутіна, пров. Ювілейний в смт Гостомель (Став IV). 2013в. Ірпін. МУВГ. 15 с.].

Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P., Sear D. 2003. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Cons. 115: 329–341. https://doi.org/10.1016/S0006-3207(03)00153-8

Citation

Shcherbak V.I., Semeniuk N.Ye. 2023. Structural and functional characteristics of phytoplankton, algal mats, detritus and water quality under main abiotic factors in urban ponds (case study of urban settlement Hostomel, Bucha district, Kyiv Region, Ukraine): Report І. Species and taxonomic composition, ecological diversity of phytoplankton and filamentous algal mats characteristics under main abiotic factors. Algologia. 33(1): 22-47. https://doi.org/10.15407/alg33.01.022