Structural and functional characteristics of phytoplankton, algal mats, detritus and water quality under main abiotic factors in urban ponds (case study of urban settlement Hostomel, Bucha District, Kyiv Region, Ukraine)

Report ІI. Quantitative indicators, dominant complexes of phytoplankton, detritus and water quality of urban ponds

Authors

Shcherbak V.I.*, Semeniuk N.Ye.
Institute of Hydrobiology of the NAS of Ukraine, 12 Prosp. Heroyiv Stalingrada, Kyiv 04210, Ukraine

Section:

Ecology, Cenology, Conservation of Algae and their Role in Nature

Issue:

Vol. 33 No. 2 (2023)

Pages:

65-82

DOI:

https://doi.org/10.15407/alg33.02.065

Abstract

The paper deals with phytoplankton quantitative indicators and dominant complex structure, and dimensional and morphological characteristics of detritus particles in the ponds of Hostomel urban settlement. Water quality has been assessed according to phytoplankton characteristics. The phytoplankton abundance made up 2648.0–113675.0 thousand cells × dm–3, and it was mainly formed by Cyanobacteria. The biomass varied within 3.72–16.53 g × m–3, which is indicative of eutrophic waters. The biomass was dominated by Euglenozoa, Miozoa and Bacillariophyta. The dominant complex according to phytoplankton abundance included small-celled Cyanobacteria, according to biomass – large-celled Euglenozoa, Miozoa and Bacillariophyta with a certain share of Cyanobacteria. Different structures of dominant complexes according to abundance and biomass is an important adaptation mechanism of urban ponds phytoplankton. Phytoplankton’s high primary productivity completely fulfils energetic and trophic demands of aquatic organisms at higher trophic levels, and the unconsumed algal biomass is decomposed and transferred to the water column in the form of organic detritus. The organic detritus particles can be ranged into four classes – from minimal < 30 mcm to maximal > 101 mcm, whose biomass can reach 57.60–62.80 mg × dm–3. It indicates that this biological component is very important in forming energy flow, matter circulation and trophic relations. Water quality assessment according to phytoplankton saprobiological characteristics has shown that χ–ο-saprobic and β-mesosaprobic organisms prevailed in the ponds under study. So, the water bodies can be classified within the range “very clean”–“clean” and “moderately polluted” waters. Unlike most urban ponds, the pond network of Hostomel can be considered a quite safe recreation zone from the ecological point of view and is an attractive green space within the urban landscape.

Keywords:

phytoplankton, abundance, biomass, dominant complex, primary production, detritus

References

Bass Ya.I., Shcherbak V.I. 1988. Influx of organic matter and biogenic elements of phytoplankton into bottom sediments. In: Proceedings of the 1st Baikal International сonferece (Irkutsk, 2–7 Oct., 1988). Irkutsk. Pp. 59–60. [Басс Я.И., Щербак В.И. 1988. Поступление органического вещества и биогенных элементов фитопланктона в донные отложения. В кн.: Тезисы докладов I Байкальской международной конференции (Иркутск, 2–7 окт. 1988 г.). Иркутск. С. 59–60].

Bolpagni R., Poikane S., Laini A., Bagella S., Bartoli M., Cantonati M. 2019. Ecological and conservation value of small standing-water ecosystems: a systematic review of current knowledge and future challenges. Water. 11(3): 402. https://doi.org/10.3390/w11030402

Burchardt L., Messyasz B., Stępniak A. 2006. Diversity of phytoplankton community in Borusa and Grundella ponds. Teka Komisji Ochrony Kształtowania Środowiska Przyrodniczego. 3: 35–40.

Casa V., Brancolini F., Mielnicki D., Mataloni G. 2020. Fish-killing diatom bloom in an urban recreational pond: and index case for a global warming scenario? Oecol. Austral. 24(4): 878–889. https://doi.org/10.4257/oeco.2020.2404.11

Downing J.A. 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica. 29(1): 9–24.

Dunker S. 2020. Imaging flow cytometry for phylogenetic and morphologically based functional group clustering of a natural phytoplankton community over 1 year in an urban pond. Cytometry. Pt A. 97A: 727–736. https://doi.org/10.1002/cyto.a.24044

Jachniak E., Młyniuk A. 2019. The variability of the planktonic algae biomass and their species structure in the ponds of the park and palace complex in Żywiec. J. Ecol. Eng. 20(7): 53–60. https://doi.org/10.12911/22998993/109868 https://www.ncbi.nlm.nih.gov/pubmed/24798921

Kravtsova O.V., Shcherbak V.I. 2020. Methodology of assessing the degree of the influence of anthropogenic factors on phytoplankton of urban water bodies. Hydrobiol. J. 56(5): 3–14. https://doi.org/10.1615/HydrobJ.v56.i5.10

Lévesque D., Pinel-Alloul B., Giani A., Kufner D.C.L., Mimouni E.-A. 2020. Are fluorometric, taxonomic and functional indicators of phytoplankton community structure linked to environmental typology of urban ponds and lakes? Inland Wat. 10(1): 71–88. https://doi.org/10.1080/20442041.2019.1678970

Minelgate G., Frost P.C., Xenopoulos M.A., Stephansen D.A., Fejerskov M.L. Vollertsen J. 2020. Planktonic algae abundance and diversity are similar in urban stormwater ponds of different geographic locations and natural shallow lakes. Urban Ecosyst. 23: 841–850. https://doi.org/10.1007/s11252-020-00967-7

Olding D.D., Hellebust J.A., Douglas M.S.V. 2000. Phytoplankton community composition in relation to water quality and water-body morphometry in urban lakes, reservoirs, and ponds. Can. J. Fish. Aquat. Sci. 57(10): 2163–2174. https://doi.org/10.1139/cjfas-57-10-2163

Peretyatko A., Teissier S., De Backer S., Triest L. 2010. Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Int. J. Lim. 46(2): 121–133. https://doi.org/10.1051/limn/2010009

Shcherbak V.I. 1999. Primary Production of Algae in the Dnieper and Dnieper Reservoirs. Hydrobiol. J. 35(1): 1–13. https://doi.org/10.1615/HydrobJ.v35.i1.10

Shcherbak V.I. 2000. Photosynthetic Activity of Dominant Species of the Dnieper River Phytoplankton. Hydrobiol. J. 36(2): 71–84. https://doi.org/10.1615/HydrobJ.v36.i2.60

Shcherbak V.I. 2006. Phytoplankton. In: Methods of hydroecological studies of surface waters. Kyiv: Logos. Pp. 12–44. [Щербак В.І. Фітопланктон. 2006. В кн.: Методи гідроекологічних досліджень поверхневих вод. Київ: Логос. С. 12–44].

Shcherbak V.I., Semeniuk N.Ye. 2023. Structural and functional characteristics of phytoplankton, filamentous algal mats, detritus and water quality under main abiotic factors in urban ponds (case study of urban settlement Hostomel, Bucha district, Kyiv region, Ukraine). Rep. І. Species and taxonomic composition, ecological diversity of phytoplankton and filamentous algal mats characteristics under main abiotic factors. Algologia. 33(1): 22–47. [Щербак В.І., Семенюк Н.Є. 2023. Структурно-функціональна характеристика фітопланктону, дерновин-подушок, детриту та якість води за дії основних абіотичних чинників ставків міської агломерації (смт Гостомель, Бучанський р-н Київської обл., Україна). Повідомлення І. Видове, таксономічне, екологічне різноманіття фітопланк-тону й характеристика дерновин-подушок за основних абіотичних складових ставків. Альгологія. 33(1): 22–47]. https://doi.org/10.15407/alg33.01.022

Shcherbak V.I., Zhdanova G.A. 1988. Use of P/B coefficient of algae as a measure of the effect of zooplankton on primary production of phytoplankton. Hydrobiol. J. 24(5): 78–79.

Shcherbak V.I., Semenuyk N.Ye. 2009. Use of phytoplankton for the assessment of the ecological state of water bodies of the megalopolis according to the EU Water Framework Directive – WFD (2000/60/EC). Hydrobiol. J. 45(2): 24–34. https://doi.org/10.1615/HydrobJ.v45.i2.30

Waajen G.W.A.M., Faasen E.J., Lürling M. 2014. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. Environ. Sci. Pollut. Res. 21: 9983–9994. https://doi.org/10.1007/s11356-014-2948-y https://www.ncbi.nlm.nih.gov/pubmed/24798921

Citation

Shcherbak V.I., Semeniuk N.Ye. 2023. Structural and functional characteristics of phytoplankton, algal mats, detritus and water quality under main abiotic factors in urban ponds (case study of urban settlement Hostomel, Bucha District, Kyiv Region, Ukraine): Report ІI. Quantitative indicators, dominant complexes of phytoplankton, detritus and water quality of urban ponds. Algologia. 33(2): 65-82. https://doi.org/10.15407/alg33.02.065