A polyphasic approach leading to the discovery of new taxa of terrestrial cyanobacteria for the flora of Ukraine

Authors

Mikhailyuk T.I.1*, Vinogradova O.M.1, Gromakova A.B.2, Glaser K.3, Karsten U.3
1 M.G. Kholodny Institute of Botany, NAS of Ukraine, 2 Tereshchenkivska Str., Kyiv 01601, Ukraine
2 V.N. Karazin Kharkiv National University, Department of Botany and Plant Ecology, 4 Svobody Sq., Kharkiv 61022, Ukraine
3 University of Rostock, Institute of Biological Sciences, Department of Applied Ecology and Phycology, 3 Albert-Einstein-Strasse, Rostock D-18057, Germany

Section:

Flora and Geography

Issue:

Vol. 33 No. 3 (2023)

Pages:

185–212

DOI:

https://doi.org/10.15407/alg33.03.185

Abstract

Several morphotypes of filamentous cyanobacteria were found in the terrestrial habitats of the Kharkiv Region (biological soil crusts) and in the vicinity of Kyiv (old concrete wall in the forest). Morphological and molecular characterization of four original strains revealed that they belong to recently described genera Wilmottia Strunecký, Elster et Komárek, Pycnacronema M.D. Martins et Branco, Myxacorys Pietrasiak et J.R. Johansen and Tildeniella Mai, J.R. Johansen et Pietrasiak. All of them are new to the flora of Ukraine. Besides the analysis of p-distances, the nucleotide sequence of the 16S-23S ITS region and the secondary structures of its most informative helices, we used in our phylogenetic analyses sequences of the 16S rRNA gene. All Ukrainian strains joined the clades of the corresponding genera with a high degree of support in the Bayesian and Maximum Likelihood analyses. However, their species-level identification gave ambiguous results. Reliable result was obtained only for the strain of genus Wilmottia. It was identified as Wilmottia murrayi (W. et G.S.West) Strunecký, Elster et Komárek. This is the first morphologically and molecularly confirmed record of this species in Europe. Two strains were identified as Pycnacronema cf. caatingensis and Tildeniella cf. torsiva due to their deviations from these species both in morphology and the 16S–23S ITS secondary structures. In the 16S rRNA gene–based phylogenetic analysis, original strain of the genus Myxacorys took separate position among the known species of this genus and also had a number of morphological differences from them. Therefore, it might represent a new species, but this cannot be proven due to the lack of a 16S-23S ITS sequence of the original strain. Detailed description of morphology of the studied strains with tabular review of corresponding species are given.

Keywords:

Myxacorys, Pycnacronema, Tildeniella, Wilmottia, 16S rRNA, 16S-23S ITS, secondary structures, Ukraine, new floristic records, сyanobacteria

References

Anagnostidis K., Komárek J. 1988. Modern approach to the classification system of сyanophytes. 3. Oscillatoriales. Arch. Hydrobiol., Suppl. 80(1-4). Algol. Stud. 50–53: 327–472.

Bertold D.E., Lefler F.W., Laughinghouse H.D. 2022. Recognizing novel cyanobacterial diversity in marine benthic mats, with description of Sirenicapillariaceae fam. nov., two new genera, Sirenicapillaria gen. nov. and Tigrinifilum gen. nov., and seven new species. Phycologia. 61(2): 146–165. https://doi.org/10.1080/00318884.2021.2006589

Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 6318: 1–95.

Byun Y., Han K. 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics. 25(11): 1435–1437. https://doi.org/10.1093/bioinformatics/btp252 https://www.ncbi.nlm.nih.gov/pubmed/19369500

Chatchawan T., Komárek J., Strunecký O., Smarda J., Peerapornpisal Y. 2012. Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogam. Algol. 33: 41–59. https://doi.org/10.7872/crya.v33.iss1.2011.041

Guiry M.D., Guiry G.M. 2021. AlgaeBase. World. electron. publ. Nat. Univ. Ireland, Galway. Available from: http://www. algaebase.org (accessed 9 June 2023)

Hauer T., Bohunická M., Johansen J.R., Mareš J., Berrendero-Gomez E. 2014. Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. J. Phycol. 50: 1089–1100. https://doi.org/10.1111/jpy.12241 https://www.ncbi.nlm.nih.gov/pubmed/26988790

Johansen J.R., González-Resendiz L., Escobar-Sánchez V., Segal-Kischinevzky C., Martínez-Yerena J., Hernández-Sánchez J., Hernández-Pérez G., León-Tejera H. 2021. When will taxonomic saturation be achieved? A case study in Nunduva and Kyrtuthrix (Rivulariaceae, Cyanobacteria). J. Phycol. 57(6): 1699–1720. https://doi.org/10.1111/jpy.12201

Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30: 772–780. https://doi.org/10.1093/molbev/mst010. Epub 2013 Jan 16. https://www.ncbi.nlm.nih.gov/pubmed/23329690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603318

Kim M., Oh H.S., Park S.Ch., Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346–351. https://doi.org/10.1099/ijs.0.059774-0 https://www.ncbi.nlm.nih.gov/pubmed/24505072

Komárek J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51(3): 346–353. https://doi.org/10.1080/09670262.2016.1163738

Komárek J., Anagnostidis K. 2005. Cyanoprokaryota. 2. Oscillatoriales. Süsswasserflora von Mitteleuropa. München: Elsevier Spectr. Bd 19/2. 759 p.

Komárek J., Kaštovský J., Mareš J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014 using a polyphasic approach. Preslia. 86(4): 295–235.

Komárek J., Johansen J.R., Šmarda J., Strunečky O. 2020. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea, Olomouc. 20(2): 171–191. https://doi.org/10.5507/fot.2020.006

Kostikov I.Yu., Romanenko P.O., Demchenko E.M., Darienko T.M., Mikhailyuk T.I. Rybchin-skiy O.V., Solonenko A.M. 2001. The soil algae from Ukraine (history and methods of investigation, classification system, floristics. Kyiv: Phytosociocenter. 300 р. [Костіков І.Ю., Романенко П.О., Демченко Е.М., Дарієнко Т. М., Михайлюк Т.І., Рибчинський О.В., Солоненко А.М. 2001. Водорості ґрунтів України (історія та методи дослідження, система, конспект флори). Київ: Фітосоціоцентр. 300 с.].

Lee A.-J., Seo Y., Ki J.-S., Lee O.-M. 2020. Morphology and molecular description of Wilmottia koreana sp. nov. (Oscillatoriales, Cyanobacteria) isolated from the Republic of Korea. Phytotaxa. 447(4): 237–251. https://doi.org/10.11646/phytotaxa.447.4.2

Mai T., Johansen J.R., Pietrasiak N., Bohunická M., Martin M.P. 2018. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa. 365(1): 1–59. doi.org/10.11646/phytotaxa.365.1.1 https://doi.org/10.11646/phytotaxa.365.1.1

Machado-de-Lima N.M., Martins M.D., Branco L.H.Z. 2017. Description of a tropical new species of Wilmottia (Oscillatoriales, Cyanobacteria) and considerations about monophyly of W. murrai. Phytotaxa. 307(1): 43–54. https://doi.org/10.11646/phytotaxa.307.1.4

Machado de Lima N.M., Branco L.H.Z. 2020. Biological soil crusts: new genera and species of Cyanobacteria from Brazilian semi-arid regions. Phytotaxa. 470(4): 263–281. https://doi.org/10.11646/phytotaxa.470.4.1

Marin B., Nowack E.C.M., Melkonian M. 2005. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 156: 425–432. https://doi.org/10.1016/j.protis.2005.09.001 https://www.ncbi.nlm.nih.gov/pubmed/16310747

Martins M.D., Machado-de-Lima N.M., Branco L.H.Z. 2019. Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). J. Phycol. 55: 146–159. https://doi.org/10.1111/jpy.12805 https://www.ncbi.nlm.nih.gov/pubmed/30362579

Mikhailyuk T.I., Vinogradova O.M. 2022. First record of the representative of genus Tenebriella (Cyanobacteria, Oscillatoriales) on Cape Kazantip (the Sea of Azov, Ukraine). Algologia. 32(3): 264–270. [Михайлюк Т.І., Виноградова О.М. 2022. Перша знахідка представника роду Tenebriella (Cyanobacteria, Oscillatoriales) на мисі Казантип (Азовське море, Україна). Альгологія. 32(3): 264–270]. https://doi.org/10.15407/alg32.03.264

Mikhailyuk T.I., Vinogradova O.N., Glaser K., Karsten U. 2016. New taxa for the flora of Ukraine, in the context of modern approaches to taxonomy of Cyanoprokaryota/ Cyanobacteria. Int. J. Algae. 18(4): 301–320. https://doi.org/10.1615/InterJAlgae.v18.i4.10

Mikhailyuk T.I., Vinogradova O., Glaser K., Demchenko E., Karsten U. 2018. Diversity of Terrestrial algae of Cape Kazantip (the Sea of Azov, Ukraine) and some remarks on their phylogeny and ecology. Int. J. Algae. 20(4): 313–338. https://doi.org/10.1615/InterJAlgae.v20.i4.10

Mikhailyuk T., Glaser K., Tsarenko P., Demchenko E., Karsten U. 2019. Composition of biological soil crusts from sand dunes of the Baltic Sea coast, in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. Eur. J. Phycol. 54: 263–290. https://doi.org/10.1080/09670262.2018.1557257

Moreira-Fernandes V., Giraldo-Silva A., Roush D, Garcia-Pichel F. 2021. Coleofasciculaceae, a monophyletic home for the Microcoleus steenstrupii complex and other desiccation-tolerant filamentous cyanobacteria. J. Phycol. 57(5): 1563–1579. h https://doi.org/10.1111/jpy.13199 https://www.ncbi.nlm.nih.gov/pubmed/34289106

Mühlsteinová R., Johansen J.R., Pietrasiak N., Martin P.M. 2014. Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. Phytotaxa. 163(4): 216–228. https://doi.org/10.11646/phytotaxa.163.4.2

Osorio-Santos K., Pietrasiak N., Bohunická M., Miscoe L.H., Kováčik L., Martin M. P., Johansen J. R. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur. J. Phycol. 49(4): 450–470. https://doi.org/10.1080/09670262.2014.976843

Pietrasiak N., Osorio-Santos K., Shalygin S., Martin M.P., Johansen J.R. 2019. When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. J. Phycol. 55: 976–996. https://doi.org/10.1111/jpy.12897 https://www.ncbi.nlm.nih.gov/pubmed/31233617

Pietrasiak N., Reeve Sh., Osorio-Santos K., Lipson D.A., Johansen J.R. 2021. Trichotorquatus gen. nov. - a new genus of soil cyanobacteria discovered from American drylands. J. Phycol. 57(3):886-902. https://doi.org/10.1111/jpy.13147 https://www.ncbi.nlm.nih.gov/pubmed/33583028

Romanenko P.A., Vinogradova O.N., Romanenko E.A., Mikhailyuk T.I., Babenko L.M., Ivannikov R., Scherbak N.N. 2020. Morphological and molecular characterisation of the representative of Brasilonema (Scytonemataceae, Cyanoprokaryota) from the tropical greenhouse in Kyiv (Ukraine). Algologia. 30(2): 113–133. [Романенко П.А., Виногра- дова О.Н., Романенко Е.А., Михайлюк Т.И., Бабенко Л.М., Иванников Р., Щербак Н.Н. 2020. Морфологическая и молекулярная характеристика представителя Brasilonema Fiore et al. (Scytonemataceae, Cyanoprokaryota) из тропической оранжерии в Киеве. Альгология. 30(2): 113–133]. https://doi.org/15.407/alg30.02.113

Radzi R., Merican F., Broady P., Convey P., Muangmai N., Omar W.M.W., Lavoué S. 2021. First record of the cyanobacterial genus Wilmottia (Coleofasciculaceae, Oscillatoriales) from the South Orkney Islands (Antarctica). Algae. 36(2): 111–121. https://doi.org/10.4490/algae.2021.36.5.6

Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 https://www.ncbi.nlm.nih.gov/pubmed/12912839

Skoupý S., Stanojković A., Pavlíková M., Poulickova A., Dvořák P. 2022. New cyanobacterial genus Argonema is hiding in soil crusts around the world. Sci. Rep. 12: 7203. https://doi.org/10.1038/s41598-022-11288-4 https://www.ncbi.nlm.nih.gov/pubmed/35504986 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065122

Soares F., Tiago I., Trovão J., Coelho C., Mesquita N., Gil F., Catarino L., Cardoso S.M., Portugal A. 2019. Description of Myxacorys almediensis sp. nov. (Synechococcales, Cyanobacteria), isolated from limestone walls of the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). Phytotaxa. 419(1): 77–90. https://doi.org/10.11646/phytotaxa.419.1.5

Stackebrandt E., Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today. 33: 152–155.

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35: 171–205. https://doi.org/10.1128/br.35.2.171-205.1971 https://www.ncbi.nlm.nih.gov/pubmed/4998365 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC378380

Strunecký O., Elster J., Komárek J. 2011. Taxonomic revision of the freshwater cyanobacterium "Phormidium" murrayi = Wilmottia murrayi. Fottea. 11(1): 57–71. https://doi.org/10.5507/fot.2011.007

Strunecký O., Komárek J., Johansen J.R., Lukešová A., Elster J. 2013. Molecular and morphological criteria for revision of the genus Microcoleus and its relation to Phormidium autumnale, Cyanobacteria. J. Phycol. 49: 1167–1180. https://doi.org/10.1111/jpy.12128 https://www.ncbi.nlm.nih.gov/pubmed/27007635

Strunecký O., Komárek J., Smarda J. 2014. Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers. Preslia. 86(3): 197–207.

Strunecký O., Bohunická M., Johansen J.R., Čapková K., Raabová L., Dvořák P., Komárek J. 2017. A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria). Fottea, Olomouc. 17(1): 114–126. https://doi.org/10.5507/fot.2016.025

Strunecký O., Ivanova A.P., Mareš J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 59(1): 12–51. https://doi.org/10.1111/jpy.13304 https://www.ncbi.nlm.nih.gov/pubmed/36443823

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 https://www.ncbi.nlm.nih.gov/pubmed/24132122 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312

Vinogradova O.N., Mikhailyuk T.I. 2009. Algoflora of caves and grottoes of the National Nature Park "Podilsky Tovtry" (Ukraine). Int. J. Algae. 11(3): 809–819. https://doi.org/10.1615/InterJAlgae.v11.i3.80

Vinogradova O.N., Mikhailyuk T.I., Glaser K., Holzinger A., Karsten U. 2017. New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine. Ukr. Bot. J. 74(4): 451–465. https://doi.org/10.15407/ukrbotj74.06.509

West W., West G.S. 1911. Pt VII. Freshwater algae. In: British Antarctic Expedition 1907–9. Vol. 1. Biology. Ed. J. Murray. Pp. 264–298.

Wilmotte A., Van der Auwera G., De Wachter R. 1993. Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF') strain PCC75 18, and phylogenetic analysis. FEBS Lett. 317: 96–100. https://doi.org/10.1016/0014-5793(93)81499-P https://www.ncbi.nlm.nih.gov/pubmed/8428640

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31: 3406–3416. https://doi.org/10.1093/nar/gkg595 https://www.ncbi.nlm.nih.gov/pubmed/12824337 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169194

Citation

Mikhailyuk T.I., Vinogradova O.M., Gromakova A.B., Glaser K., Karsten U. 2023. A polyphasic approach leading to the discovery of new taxa of terrestrial cyanobacteria for the flora of Ukraine. Algologia. 33(3): 185–212. https://doi.org/10.15407/alg33.03.185