Comparative polysaccharides extraction methods ulvans from Ulva ohnoi (Chlorophyta): advantages of microwave-assisted techniques

Authors

Spagnuolo D.*, Genovese G.
Phycological Laboratory, Department of Chemical, Biological, Pharmaceutical and Environmental Sci., 31 Salita Sperone, University of Messina, Messina 98166, Italy

Section:

Procedure

Issue:

Vol. 35 No. 1 (2025)

Pages:

73-83

DOI:

https://doi.org/10.15407/alg35.01.073

Abstract

Macroalgae represent a valuable resource due to their potential applications in various sectors. However, their biomass can sometimes interfere with human activities and contribute to the eutrophication of aquatic environments, as algae often grow uncontrollably. In this study, Ulva ohnoi M.Hiraoka et S.Shimada, a macroalga known for its tendency to produce a high biomass, was chosen, and used as a source of polysaccharides. The objective of this study was to compare different polysaccharide extraction methods to evaluate yield, costs, and potential environmental impact. Data obtained comparing four extraction protocols finalized to determine the most efficient and cost-effective method considering both environmental and economic impacts, show the potentiality of an alternative extraction protocols. The microwave-assisted extraction has the highest yield and lowest energy consumption and solvent methods offering clear environmental benefits. The obtained results indicate that the microwave-assisted extraction method could be used as an alternative to the conventional one for extracting ulvans from U. ohnoi.

Keywords:

аlgal polysaccharides, microwave-assisted polysaccharide extraction, conventional polysaccharide extraction, Ulva ohnoi, Chlorophyta

References

Abdul Khalil H.P.S., Lai T.K., Tye Y.Y., Rizal S., Chong E.W.N., Yap S.W., Hamzah A.A., Nurul Fazita M.R., Paridah M.T. 2018. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym. Lett. 12(4): 296–317. https://doi.org/10.3144/expresspolymlett.2018.27

Ahmed N., Sheikh M.A., Ubaid M., Chauhan P., Kumar K., Choudhary S. 2024. Comprehensive exploration of marine algae diversity, bioactive compounds, health benefits, regulatory issues, and food and drug applications. Meas. Food. 14: 100163. https://doi.org/10.1016/j.meafoo.2024.100163

Araújo R., Vázquez Calderón F., Sánchez López J., Azevedo I.C., Bruhn A., Fluch S., Garcia Tasende M., Ghaderiardakani F., Ilmjärv T., Laurans M., Mac Monagail M., Mangini S., Peteiro C., Rebours C., Stefansson T., Ullmann J. 2021. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 7: 626389. https://doi.org/10.3389/fmars.2020.626389

Armeli Minicante S., Bongiorni L., De Lazzari A. 2022. Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. Sustainability. 14(9): 5634. https://doi.org/10.3390/su14095634

Armeli Minicante S., Melton J.T., Spagnuolo D., Manghisi A., Genovese G., Morabito M., Lopez-Bautista J. 2024. A DNA barcode inventory of the genus Ulva (Chlorophyta) along two Italian regions: Updates and considerations. Bot. Mar. https://doi.org/10.1515/bot-2023-0071 https://doi.org/10.1515/bot-2023-0071

Bussy F., Rémy S., Le Goff M., Collén P.N., Trapp-Fragnet L. 2022. The sulphated polysaccharides extract ulvans from Ulva armoricana limits Marek's disease virus dissemination in vitro and promotes viral reactivation in lymphoid cells. BMC Veter. Res. 18(1): 155. https://doi.org/10.1186/s12917-022-03247-y https://www.ncbi.nlm.nih.gov/pubmed/35477401 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044586

Chen X., Liu Q., Jiang X.-Y., Zeng F. 2005. Microwave-assisted extraction of polysaccharides from Solanum nigrum. J. Centr. South Univ. Technol. 12(5): 556–560. https://doi.org/10.1007/s11771-005-0122-x

Costa C., Alves A., Pinto P.R., Sousa R.A., Borges da Silva E.A., Reis R.L., Rodrigues A.E. 2012. Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr. Polym. 88(2): 537–546. https://doi.org/10.1016/j.carbpol.2011.12.041

European Commission. Joint Research Centre. 2021. Algae as food and food supplements in Europe. Publ. Office. https://data.europa.eu/doi/10.2760/049515

Garcia-Vaquero M., Ravindran R., Walsh O., O'Doherty J., Jaiswal A.K., Tiwari B.K., Rajauria G. 2021. Evaluation of Ultrasound, Microwave, Ultrasound-Microwave, Hydrothermal and High Pressure Assisted Extraction Technologies for the Recovery of Phytochemicals and Antioxidants from Brown Macroalgae. Mar. Drugs. 19(6): 309. https://doi.org/10.3390/md19060309 https://www.ncbi.nlm.nih.gov/pubmed/34071764 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230109

Glasson C.R.K., Sims I.M., Carnachan S.M., de Nys R., Magnusson M. 2017. A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res. 27: 383–391. https://doi.org/10.1016/j.algal.2017.07.001

Heng M.Y., Tan S.N., Yong J.W.H., Ong E.S. 2013. Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal. Chem. 50: 1–10. https://doi.org/10.1016/j.trac.2013.03.012

Heriyanto H., Kustiningsih I., Sari D.K. 2018. The effect of temperature and time of extraction on the quality of Semi Refined Carrageenan (SRC). MATEC Web. Conf. 154: 01034. https://doi.org/10.1051/matecconf/201815401034

Kidgell J.T., Carnachan S.M., Magnusson M., Lawton R.J., Sims I.M., Hinkley S.F.R., de Nys R., Glasson C.R.K. 2021. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydr. Polym. 264: 118010. https://doi.org/10.1016/j.carbpol.2021.118010 https://www.ncbi.nlm.nih.gov/pubmed/33910714

Kidgell J.T., Magnusson M., De Nys R., Glasson C.R.K. 2019. Ulvan: A systematic review of extraction, composition and function. Algal Res. 39: 101422. https://doi.org/10.1016/j.algal.2019.101422

Lahaye M., Robic A. 2007. Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules. 8(6): 1765–1774. https://doi.org/10.1021/bm061185q https://www.ncbi.nlm.nih.gov/pubmed/17458931

Lakshmi D.S., Sankaranarayanan S., Gajaria T.K., LiG., Kujawski W., Kujawa J., Navia R. 2020. A Short Review on the Valorization of Green Seaweeds and Ulvan: Feedstock for Chemicals and Biomaterials. Biomolecules. 10(7): 1–20. https://doi.org/10.3390/biom10070991 https://www.ncbi.nlm.nih.gov/pubmed/32630631 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407860

Milledge J., Harvey P. 2016. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. J. Mar. Sci. Eng. 4(3): 60. https://doi.org/10.3390/jmse4030060

Spagnuolo D., Di Martino A., Zammuto V., Armeli Minicante S., Spanò A., Manghisi A., Gugliandolo C., Morabito M., Genovese G. 2022. Conventional vs. Innovative Protocols for the Extraction of Polysaccharides from Macroalgae. Sustainability. 14(10): 5750. https://doi.org/10.3390/su14105750

Spagnuolo D., Iannazzo D., Len T., Balu A.M., Morabito M., Genovese G., Espro C., Bressi V. 2023. Hydrochar from Sargassum muticum: A sustainable approach for high-capacity removal of Rhodamine B dye. RSC Sustainability. 6: 1–12. https://doi.org/10.1039/D3SU00134B

Yuan Y., Xu X., Jing C., Zou P., Zhang C., Li Y. 2018. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr. Polym. 181: 902–910. https://doi.org/10.1016/j.carbpol.2017.11.061 https://www.ncbi.nlm.nih.gov/pubmed/29254052

Zammuto V., Rizzo M.G., Spano A., Spagnuolo D., Di Martino A., Morabito M., Manghisi A., Genovese G., Guglielmino S., Calabrese G. 2022. Effects of crude polysaccharides from marine macroalgae on the adhesion and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Algal Res. 63: 102646. https://doi.org/10.1016/j.algal.2022.102646

Citation

Spagnuolo D., Genovese G. 2025. Comparative polysaccharides extraction methods ulvans from Ulva ohnoi (Chlorophyta): advantages of microwave-assisted techniques. Algologia. 35(1): 73-83. https://doi.org/10.15407/alg35.01.073