Antioxidant of the endosymbiotic dinoflagellate Symbiodinium sp. from the sea anemone Stichodactyla haddoni Saville-Kent

Authors

Soostani B.S.1, Zarei Darki B.2*, Yousefzadi M.3, Ranjbar M.Sh.1
1 Hormozgan University, Faculty of Marine Science and Technology, Dep. of Marine Biology, Км 9 Minab Road, Bandar Abbas, 79161-93145, Iran
2 TarbiatModares University, Faculty of Marine Science, Dep. of Marine Biology, Mazandaran, Noor, 46414-356, Iran
3 University of Qom, Faculty of Science, Dep. of Biology, Alghadir Blvd, Qom, 37161-46611, Iran

Section:

Physiology, Biochemistry. Biophysics

Issue:

Vol. 35 No. 1 (2025)

Pages:

15-29

DOI:

https://doi.org/10.15407/alg35.01.015

Abstract

Marine dinoflagellates are potentially useful for many biomedical, toxicological and ecological applications. This study focuses on determining the antioxidant properties of Symbiodinium sp. isolated from the sea anemone Stichodactyla haddoni, collected from the Persian Gulf and the Gulf of Oman in 2018 and 2019, purified and cultured also in vitro. Antioxidant activity and total antioxidant activity were determined by two methods using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and ferric-reducing antioxidant power (FRAP). The highest DPPH radical scavenging activity detected was 135.78 μg · mL-1 in the methanolic extract of Symbiodinium sp. from the winter Chabahar Bay sample using LC50. The FRAP method showed the maximum antioxidant activity (0.3 μg mL-1) in the methanolic extract at the concentration of 2 mg · mL-1 in the same sample. Cluster heatmap analysis showed that antioxidant activity was highly correlated with physicochemical factors (temperature and salinity) in the methanolic extract of Symbiodinium sp. Our results showed that the role of antioxidants and the types of ROS that are predominantly neutralized by peridinin and diatoxanthin should be more carefully studied, and we recommend using the electron spin resonance (ESR) spectroscopic method to determine the antioxidant properties of algae that contain these pigments.

Keywords:

zooxanthellae, symbiont, culture, antioxidant, Indian Ocean

References

Dang K.V., Pierangelini M., Roberty S., Cardol P. 2019. Alternative photosynthetic electron transfers and bleaching phenotypes upon acute heat stress in Symbiodinium and Breviolum spp. (Symbiodiniaceae) in culture. Front. Mar. Sci. 6: 656. https://doi.org/10.3389/fmars.2019.00656

Davy S.K., Allemand D., Weis V.M. 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76(2): 229–261. https://doi.org/10.1128/MMBR.05014-11 https://www.ncbi.nlm.nih.gov/pubmed/22688813 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372257

Ganesan K., Kumar K.S., Rao P.S. 2011. Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovat. Food Sci. Emerg. Technol. 12(1): 73–78. https://doi.org/10.1016/j.ifset.2010.11.005

Gordon B.R., Leggat W. 2010. Symbiodinium – invertebrate symbioses and the role of metabolomics. Mar. Drugs. 8(10): 2546–2568. https://doi.org/10.3390/md8102546 https://www.ncbi.nlm.nih.gov/pubmed/21116405 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992991

Gulcin I. 2020. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 94(3): 651–715. https://doi.org/10.1007/s00204-020-02689-3 https://www.ncbi.nlm.nih.gov/pubmed/32180036

Hamanaka R.B., Chandel N.S. 2009. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 21(6): 894–899. https://doi.org/10.1016/j.ceb.2009.08.005 https://www.ncbi.nlm.nih.gov/pubmed/19781926 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787901

Ishikawa C., Jomori T., Tanaka J., Senba M., Mori N. 2016. Peridinin, a carotenoid, inhibits proliferation and survival of HTLV-1-infected T-cell lines. Int. J. Onc. 49(4): 1713–1721. https://doi.org/10.3892/ijo.2016.3648 https://www.ncbi.nlm.nih.gov/pubmed/27499015

Iwasaki H. 1961. The life-cycle of Porphyratenera in vitro. Biol. Bull. 121(1): 173–187. https://doi.org/10.2307/1539469

Jacob-Lopes E., Queiroz M.I., Zepka L.Q. 2020. Pigments from Microalgae Handbook. Switzerland: Springer Nat. 214 p. https://doi.org/10.1007/978-3-030-50971-2

Johansen J.E., Svec W.A., Liaaen-Jensen S., Haxo F.T., 1974. Carotenoids of the Dinophyceae. Phytochemistry. 13(10): 2261–2271. https://doi.org/10.1016/0031-9422(74)85038-7

Krueger T., Becker S., Pontasch S., Dove S., Hoegh‐Guldberg O., Leggat W., Fisher P.L., Davy S.K. 2014. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol. 50(6): 1035–1047. https://doi.org/10.1111/jpy.12232 https://www.ncbi.nlm.nih.gov/pubmed/26988785

Laskey R.A. 1970. The use of antibiotics in the preparation of amphibian cell cultures from highly contaminated material. J. Cell Sci. 7(3): 653–659. https://doi.org/10.1242/jcs.7.3.653 https://www.ncbi.nlm.nih.gov/pubmed/4321684

Lesser M.P. 2011. Coral bleaching: causes and mechanisms. In: Coral reefs: An ecosystem in transition. Dordrecht: Springer. Pp. 405–419. https://doi.org/10.1007/978-94-007-0114-4_23

Muscatine L.E., Porter J.W. 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 27(7): 454–460. https://doi.org/10.2307/1297526

Muscatine L., Karakashian S.J., Karakashian M.W. 1967. Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant hydra. Comp. Biochem. Physiol. 20(1): 1–2. https://doi.org/10.1016/0010-406X(67)90720-7

Olpp T., Brückner R. 2006. Total synthesis of the light-harvesting carotenoid peridinin. Angew. Chem. Int. Edit. 45(24): 4023–4027. https://doi.org/10.1002/anie.200600502 https://www.ncbi.nlm.nih.gov/pubmed/16683293

Olson J.A. 1999. Carotenoids and human health. Arch. Latinoam. Nutr. 49(3 Suppl 1): 7S–11S.

Oyaizu M. 1986. Studies on products of browning reaction. Jap. J. Nutr. Diet. 44(6): 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

Pandolfi J.M., Bradbury R.H., Sala E., Hughes T.P., Bjorndal K.A., Cooke R.G., McArdle D., McClenachan L., Newman M.J., Paredes G., Warner R.R. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science. 301(5635): 955–958. https://doi.org/10.1126/science.1085706 https://www.ncbi.nlm.nih.gov/pubmed/12920296

Polne-Fuller M. 1991. A novel technique for preparation of axenic cultures of Symbiodinium (Pyrrophyta). J. Phycol. 27(4): 552–554. https://doi.org/10.1111/j.0022-3646.1991.00552.x

Roberty S., Furla P., Plumier J.C. 2016. Differential antioxidant response between two Symbiodinium species from contrasting environments. Plant, Cell Environ. 39(12): 2713–2724. https://doi.org/10.1111/pce.12825 https://www.ncbi.nlm.nih.gov/pubmed/27577027

Roberty S., Fransolet D., Cardol P., Plumier J.C., Franck F. 2015. Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress. Coral Reefs. 34(4): 1063–1073. https://doi.org/10.1007/s00338-015-1328-5

Rodriguez R., Redman R. 2005. Balancing the generation and elimination of reactive oxygen species. Proc. Nat. Acad. Sci. 102(9): 3175–3176. https://doi.org/10.1073/pnas.0500367102 https://www.ncbi.nlm.nih.gov/pubmed/15728396 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552941

Sha M.M.R., Samarakoon K.W., An S., Jeon Y., Lee J. 2016. Growth characteristics of three benthic dinoflagellates in mass culture and their antioxidant properties. J. Fisher. Aquat. Sci. 11: 268–277. https://doi.org/10.3923/jfas.2016.268.277

Trench R.K. 1971a. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. The assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. Roy. Soc. London. Ser. B. 177(1047): 225–235. https://doi.org/10.1098/rspb.1971.0024

Trench R.K. 1971b. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proc. Roy. Soc. London. Ser. B. 177(1047): 237–250. https://doi.org/10.1098/rspb.1971.0025

Trench R.K. 1971c. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc. Roy. Soc. London. Ser. B. 177(1047): 251–264. https://doi.org/10.1098/rspb.1971.0026

Wakefield T.S., Kempf S.C. 2001. Development of host-and symbiont-specific monoclonal antibodies and confirmation of the origin of the symbiosome membrane in a cnidarian-dinoflagellate symbiosis. Biol. Bull. 200(2): 127–143. https://doi.org/10.2307/1543306 https://www.ncbi.nlm.nih.gov/pubmed/11341574

Weis V.M. 2008. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211(19): 3059–3066. https://doi.org/10.1242/jeb.009597 https://www.ncbi.nlm.nih.gov/pubmed/18805804

Widowati I., Zainuri M., Kusumaningrum H.P., Susilowati R., Hardivillier Y., Leignel V., Mouget J.L. 2017. Antioxidant activity of three microalgae Dunaliellasalina, Tetraselmischuii and Isochrysisgalbana clone Tahiti. IOP Conf. Ser.: Earth Environ. Sci. 55(1): 01206. https://doi.org/10.1088/1755-1315/55/1/012067

Wietheger A., Fisher P.L., Gould K.S., Davy S.K. 2015. Sensitivity to oxidative stress is not a definite predictor of thermal sensitivity in symbiotic dinoflagellates. Mar. Biol. 162(10): 2067–2077. https://doi.org/10.1007/s00227-015-2736-3

Zahl P.A., McLaughlin J.O. 1957. Isolation and cultivation of zooxanthellae. Nature. 180(4578): 199–200. https://doi.org/10.1038/180199a0

Citation

Soostani B.S., Zarei Darki B., Yousefzadi M., Ranjbar M.Sh. 2025. Antioxidant of the endosymbiotic dinoflagellate Symbiodinium sp. from the sea anemone Stichodactyla haddoni Saville-Kent. Algologia. 35(1): 15-29. https://doi.org/10.15407/alg35.01.015