Comparative study of industrial wastewater treatments by Chlorella vulgaris and Scenedesmus quadricauda microalgae
Section:
Applied AlgologyIssue:
Vol. 35 No. 3 (2025)Pages:
236-252DOI:
https://doi.org/10.15407/alg35.03.236Abstract
Efficient wastewater recovery is essential for sustainable water resource management and can help alleviate regional or seasonal water shortages. Directly discharging untreated wastewater into water bodies leads to significant environmental degradation and health risks, disrupting aquatic ecosystems. Implementing efficient nutrient and pollutant removal techniques is essential to mitigate these adverse effects. Thus, we safeguard the environment and ensure public health by managing water resources sustainably. Biological treatment, particularly by cultivating aquatic plants, offers advantages over conventional methods for nutrient removal and pollution mitigation. This study evaluates the effectiveness of Chlorella vulgaris Beijer. and Scenedesmus quadricauda (Turpin) Bréb. in treating industrial wastewater. Using measurements of the removal of nitrates, phosphates, chemical oxygen demand, and biological oxygen demand, this study assesses algae suitability as an alternative to conventional farming.
Keywords:
wastewater treatment, biological treatment, microalgae cultivation, nutrient removal, environmental sustainabilityFull text
References
Abunada Z., Alazaiza M.Y., Bashir M.J. 2020. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk, and regulations. Water. 12(12): 3590. https://doi.org/10.3390/w12123590
Alazaiza M.Y., Albahnasawi A., Al Maskari T., Abujazar M.S.S., Bashir M.J., Nassani D.E., Abu Amr S.S. 2023. Biofuel production using cultivated algae: technologies, economics, and its environmental impacts. Energies. 16(3): 1316. https://doi.org/10.3390/en16031316
An J.Y., Sim S.J., Lee J.S., Kim B.W. 2003. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J. Appl. Phycol. 15: 185–191. https://doi.org/10.1023/A:1023855710410
APHA. 2017. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington, DC: Am. Publ. Health Ass.
Aslan S., Kapdan I.K. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28(1): 64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003
Bhatt P., Bhandari G., Turco R.F., Aminikhoei Z., Bhatt K., Simsek H. 2022. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. Environ. Pollut. 309: 119688. https://doi.org/10.1016/j.envpol.2022.119688 https://www.ncbi.nlm.nih.gov/pubmed/35793713
Bischoff H.W., Bold H.C. 1963. Some soil algae from Enchanted Rock and related algal species. Phycol. Stud. IV. Univ. Texas Publ. No. 6318: 1–95.
Caswell M., Zilberman D. 2002. Algol - culture. Berkeley: Univ. California. 6: 1–12.
Chen M., Chang L., Zhang J., Guo F., Vymazal J., He Q., Chen Y. 2020. Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions. Environ. Sci. Ecotech. 4: 100063. https://doi.org/10.1016/j.ese.2020.100063 https://www.ncbi.nlm.nih.gov/pubmed/36157707 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488104
Chin Y.T., Bashir M.J., Amr S.S.A., Alazaiza M.Y. 2022. Factorial design and optimization of thermal activation of persulfate for stabilized leachate treatment. Desal. Water Treat. 250(1): 211–220. https://doi.org/10.5004/dwt.2022.28190
Chioccioli M., Hankamer B., Ross I.L. 2014. Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS One. 9(5): e97269. https://doi.org/10.1371/journal.pone.0097269 https://www.ncbi.nlm.nih.gov/pubmed/24832156 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022489
Dalvi V., Naaz F., Nigam H., Jain R., Samuchiwal S., Kalia S., Kumar R., Mathur M., Bano F., Malik A., Singh A. 2021. Removal of pollutants from wastewater via biological methods and shifts in microbial community profile during treatment process. Wastewater Treatment Reactors: 19–38. https://doi.org/10.1016/B978-0-12-823991-9.00022-8
Daud N.M., Abdullah S.R.S., Hasan H.A., Dhokhikah Y. 2022. Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Sci. Total Environ. 819: 152931. https://doi.org/10.1016/j.scitotenv.2022.152931 https://www.ncbi.nlm.nih.gov/pubmed/34999070
Devi R., Dahiya R.P. 2008. COD and BOD removal from domestic wastewater generated in decentralised sectors. Biores. Technol. 99(2): 344–349. https://doi.org/10.1016/j.biortech.2006.12.017 https://www.ncbi.nlm.nih.gov/pubmed/17306528
Dickinson K.E., Whitney C.G., McGinn P.J. 2013. Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD. Algal Res. 2(2): 127–134. https://doi.org/10.1016/j.algal.2013.01.009
El-Aswar E.I., Ramadan H., Elkik H., Taha A.G. 2022. A comprehensive review on preparation, functionalization, and recent applications of nanofiber membranes in wastewater treatment. J. Environ. Manag. 301: 113908. https://doi.org/10.1016/j.jenvman.2021.113908 https://www.ncbi.nlm.nih.gov/pubmed/34626949
Has C., Pan S. 2021. Vesicle formation mechanisms: an overview. J. Liposome Res. 31(1): 90–111. https://doi.org/10.1080/08982104.2020.1730401 https://www.ncbi.nlm.nih.gov/pubmed/32066297
Hashmi Z., Bilad M.R., Fahrurrozi Zaini J., Lim J.W., Wibisono Y. 2023. Recent progress in microalgae-based technologies for industrial wastewater treatment. Fermentation. 9(3): 311. https://doi.org/10.3390/fermentation9030311
Hena S., Gutierrez L., Croué J.P. 2021. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 403: 124041. https://doi.org/10.1016/j.jhazmat.2020.124041 https://www.ncbi.nlm.nih.gov/pubmed/33265054
Huang Q., Jiang F., Wang L., Yang C. 2017. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 3(3): 318–329. https://doi.org/10.1016/J.ENG.2017.03.020
Kim J., Lingaraju B.P., Rheaume R., Lee J.Y., Siddiqui K.F. 2010. Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Sci. Technol. 15(4): 391–396. https://doi.org/10.1016/S1007-0214(10)70078-X
Mastropetros S.G., Pispas K., Zagklis D., Ali S.S., Kornaros M. 2022. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances. Biotechnol. Adv. 60: 107999. https://doi.org/10.1016/j.biotechadv.2022.107999 https://www.ncbi.nlm.nih.gov/pubmed/35667537
Mojiri A., Bashir M.J. 2022. Wastewater treatment: Current and future techniques. Water. 14(3): 448. https://doi.org/10.3390/w14030448
Oruganti R.K., Katam K., Show P.L., Gadhamshetty V., Upadhyayula V.K.K., Bhattacharyya D. 2022. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered. 13(4): 10412–10453. https://doi.org/10.1080/21655979.2022.2056823 https://www.ncbi.nlm.nih.gov/pubmed/35441582 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161886
Oswald W.J. 1988. Micro-algae and wastewater treatment. In: Micro-algal Biotech. Cambridge: Cambridge Univ. Press. Pp. 305–328.
Quijano G., Arcila J.S., Buitrón G. 2017. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol. Adv. 35(6): 772–781. https://doi.org/10.1016/j.biotechadv.2017.07.003 https://www.ncbi.nlm.nih.gov/pubmed/28694179
Rasoulamini S., Montazeri-Najafabady N., Mobasher M.A., Hoseini-Alhashemi S., Ghasemi Y. 2011. Chlorella sp: A new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Appl. Energy. 88(10): 3354–3356. https://doi.org/10.1016/j.apenergy.2010.12.040
Samer M. 2015. Biological and chemical wastewater treatment processes. Wast. Treat. Eng. 150: 61250. https://doi.org/10.5772/61250
Sayadi M.H., Ahmadpour N., Fallahi C.M., Rezaei M.R. 2016. Removal of nitrate and phosphate from aqueous solutions by microalgae: An experimental study. Glob. J. Environ. Sci. Manag. 2(4): 357–364.
Seymour J.R., Amin S.A., Raina J.B., Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2(7): 1–12. https://doi.org/10.1038/nmicrobiol.2017.65 https://www.ncbi.nlm.nih.gov/pubmed/28555622
Shabani M. 2016. CO2 bio-sequestration by Chlorella vulgaris and Spirulina platensis in response to different levels of salinity and CO2. Proc. Int. Acad. Ecol. Environ. Sci. 6(2): 53.
Silambarasan S., Logeswari P., Sivaramakrishnan R., Incharoensakdi A., Cornejo P., Kamaraj B., Chi N.T.L. 2021. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere. 268: 129323. https://doi.org/10.1016/j.chemosphere.2020.129323 https://www.ncbi.nlm.nih.gov/pubmed/33359999
Tang D., Han W., Li P., Miao X., Zhong J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Biores. Technol. 102(3): 3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047 https://www.ncbi.nlm.nih.gov/pubmed/21041075
Tarlan E., Dilek F.B., Yetis U. 2002. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Biores. Technol. 84(1): 1–5. https://doi.org/10.1016/S0960-8524(02)00029-9 https://www.ncbi.nlm.nih.gov/pubmed/12137261
Wang C., Luo D., Zhang X., Huang R., Cao Y., Liu G., Zhang Y., Wang H. 2022. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotech. 10: 100167. https://doi.org/10.1016/j.ese.2022.100167 https://www.ncbi.nlm.nih.gov/pubmed/36159737 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488105
Yusuf A., Sodiq A., Giwa A., Eke J., Pikuda O., De Luca G., Di Salvo J.L., Chakraborty S. 2020. A review of emerging trends in membrane science and technology for sustainable water treatment. J. Clean. Prod. 266: 121867. https://doi.org/10.1016/j.jclepro.2020.121867
Zamani N., Nowshadi M., Amin S., Ghasemi Y., Niyazi A. 2010. Removal of nitrogen-nitrate and ortho phosphate from wastewater using microalgae biotechnology. In: The Second International Symposium on Environmental Engineering (Tehran, 18–20 February, 2010).