ISSN (print) 0868-8540, (online) 2413-5984
logoAlgologia
  • 6 of 8
Up
Algologia 2019, 29(1): 88–103
https://doi.org/10.15407/alg29.01.088
Applied Algology

Integrated study on nutrients and heavy metals removal from domestic wastewater using free and immobilized strain Scenedesmus rubescens KACC 2 (Chlorophyta, Chlorophyceae)

Pandian S.K., Thomas J.
Abstract

Microalgae have immense potential in remediating toxic content in wastewater and serve as prospective organisms in the treatment of wastewater. Our present study reduces the input cost for microalgae cultivation using wastewater as a growth medium. Scenedesmus rubescens KACC 2, isolated from Siruvani freshwater body (India), was investigated for removal of nitrates, phosphates and heavy metals by growing microalgae in wastewater both as free cells and immobilized algal cells. Among the various polymers used for immobilization, beads with good stability were selected (аlginate and аlginate-сarrageenan) for phycoremediation. Growth and uptake of nutrients in the culture were compared and reduction in the levels of nitrates, phosphates, and heavy metal contents were monitored periodically. Reductions of phosphates (98%) and nitrates (75%) were observed with alginate algal beads. Mn, Zn, and Cu were more reduced by algae beads than with free cells. The study concludes that the immobilized microalga were effective in wastewater treatment, as with free cells, by utilizing nutrients and serve as a cost-effective green technology in biomass generation.

Keywords: microalgae, effluents, phycoremediation, cost-effective medium, immobilization, green technology

Full text: PDF (Rus) 551K

References
  1. Acevedo S., Pino N.J., Peñuela G.A. 2017. Biomass production of Scenedesmus sp. and removal of nitrogen and phosphorus in domestic wastewater. Environ. Eng. 193(1): 185–193.
  2. Akhtar N., Iqbal J., Iqbal M. 2004. Enhancement of lead (II) biosorption by microalgal biomassimmobilized onto loofa (Luffa cylindrica) sponge. Eng. Life Sci. 4(2): 171–178.
  3. APHA. Standard Methods for the Examination of Water and Wastewater. 2005. 19th ed. Amer. Publ. Health Assoc., Amer. Water Works Assoc. and Water Pollut. Control Federat. Washington, DC.
  4. Bailliez C., Largeau C., Berkaloff C., Casadevall E. 1986. Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl. Microbiol. Biot. 23(5): 361–366.
  5. Chevalier P., de la Noue J. 1985. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb. Technol. 7(12): 621–624.
  6. De la Noue J., de Pauw N. 1988. The potential of microalgal biotechnology: a reviewof production and uses of microalgae. Biotechnol. Adv. 6(4): 725–770.
  7. De la Noue J., Proulx D. 1988. Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl. Microbiol. Biotechnol. 29(2–3): 292–297.
  8. De-Bashan L.E., Bashan Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour. Technol. 101(6): 1611–1627.
  9. De la Noue J., Laliberte G., Proulx D. 1992. Algae and wastewater. J. Appl. Phycol. 4(3): 247–254.
  10. Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19(1): 11–15.
  11. Garbisu C., Hall D.O. 1993. Removal of phosphate by foam immobilized Phormidium laminosum in batch and continuous flow bioreactors. J. Chem. Tech. Biotechnol. 57: 181–189.
  12. Garbisu C., Hall D.O., Serra J.L. 1992. Nitrate and nitrite uptake by free-living and immobilized N-starved cells of Phormidium laminosum. J. Appl. Phycol. 4(2): 139–148.
  13. Garnham W.G., Codd G.A., Gadd M.G. 1992. Accumulation of cobalt, zinc and manganese by the estuarine green Chlorella salina immobilized in alginate microbeads. Environ. Sci. Technol. 26(9): 1764–1770.
  14. Gonzalez L.E., Bashan Y. 2000. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 66(4): 1527–1531.
  15. Gonzalez L.E., Canizares R.O., Baena S. 1997. Efficiency of ammonia and phophorus removal from Colombian agroindustrial wastewater by the microalgae Chorella vulgaris and Scenedesmus dimorphus. Biores. Technol. 60(3): 259–262.
  16. Gonzalez-Bashan L.E., Lebsky V.K., Hernandez J.P., Bustillos J.J., Bashan Y. 2000. Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can. J. Microbiol. 46(7): 653–659.
  17. Hameed M.S.A. 2007. Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Afr. J. Biotechol. 6(10): 1185–1191.
  18. Hameed M., Ebrahim O. 2007. Review: biotechnological potential uses of immobilized algae. Int. J. Agr. Biol. 9(1): 183–192.
  19. Hung C.P., Lo H.F., Hsu W.H., Chen S.C., Lin L.L. 2008. Immobilization of Escherichia coli novablue γ-glutamyltranspeptidase in Ca-alginate-k-carrageenan beads. Appl. Biochem. Biotechnol. 150(2): 157–170.
  20. Laliberte G., Proulx D., De Pauw N., de la Noue J. 1994. Algal technology in wastewater treatment. In: Algae and Water Pollution. Arch. Hydrobiol. Berlin. Pp. 283–302.
  21. Lau P., Tam N.F.Y., Wong Y.S. 1997. Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ. Technol. 18(9): 945–951.
  22. Liu Y., Rafailovich M.H., Malal R., Cohn D., Chidambaram D. 2009. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc. Natl. Acad. Sci. USA. 106(34): 14201–14206.
  23. Mallick N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals. 15(4): 377–390.
  24. Martinsen A., Skjak-Bræk G., Smidsrod O. 1989. Alginate as immobilization material. I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33(1): 79–89.
  25. Mohamadnia Z., Zohuriaan-Mehr M.J., Kabiri K., Jamshidi A., Mobedi H. 2007. pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J. Bioact. Compat. Polym. 22(3): 342–356.
  26. Moreira S.M., Moreira-Santos M., Ribeiro R. 2006. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enz. Mirobial Technol. 38(1–2): 135–141.
  27. Nilsson K., Birnbaum S., Flygare S., Linse L., Schroder U., Jeppsson U., Larsson P., Mosbach K., Brodelius P. 1983. A general method for the immobilization of cells with preserved viability. Eur. J. Appl. Microbiol. Biotechnol. 17(6): 319–326.
  28. Oswald W.J. 1988. Micro-algae and wastewater treatment. In: Microalgal biotechnology. Cambridge: Cambridge Univ. Press. Pp. 305–328.
  29. Piligaev A.V., Sorokina K.N., Bryanskaya A.V., Peltek S.E., Kolchanov N.A., Parmon V.N. 2015. Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Res. 12: 368–376.
  30. Proulx D., de la Noue J. 1988. Removal of macronutrients from wastewaters by immobilized microalgae. In: Bioreactor immobilized enzymes and cells: fundamentals and applications. New York: Elsevier Appl. Sci. Pp. 301–310.
  31. Ruiz-Marin A., Mendoza-Espinosa L.G., Stephenson T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Biores. Technol. 101(1): 58–64.
  32. Singh S.K., Bansal A., Jha M.K., Dey A. 2012. An integrated approach to remove Cr (VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Biores. Technol. 104: 257–265.
  33. Tahtat D., Mahlous M., Benamer S., Khodja A.N., Oussedik-Oumehdi H., Laraba-Djebari F. 2013. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int. J. Biol. Macromol. 58: 160–168.
  34. Tam N.F.Y., Wong Y.S. 2000. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ. Poll. 107(1): 145–151.
  35. Tam N.F.Y., Lau P.S., Wong Y.S. 1994. Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Wat. Sci. Technol. 30(6): 369–374.
  36. Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8): 1596–1599.
  37. Tang E.P.Y., Vincent W.F., Proulx D., Lessard P., de la Noue J. 1997. Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. J. Appl. Phycol. 9(4): 371–381.
  38. Zhan J.F., Jiang T., Pan J. 2013. Immobilization of phospholipase a1 using a polyvinyl alcohol-alginate matrix and evaluation of the effects of immobilization. Braz. J. Chem. Eng. 30(4): 721–728.