Harmful blooms caused by dinoflagellates in the Pacific of Guatemala (2019–2022)

Authors

Paz-Cordón K.E.1, Okolodkov Y.B.2*, Cobo-Gradín F.3
1 Instituto de Investigaciones Hidrobiologicas, Centro de Estudios del Mar y Acuacultura, Universidad de San Carlos de Guatemala (IIH-CEMA-USAC), Ciudad de Guatemala, Guatemala
2 Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana (ICIMAP-UV), Boca del Río, Veracruz, Mexico
3 Universidad de Santiago de Compostela (USC), Pontevedra, Galicia, Spain

Section:

Ecology, Cenology, Conservation of Algae and their Role in Nature

Issue:

Vol. 34 No. 1 (2024)

Pages:

3-19

DOI:

https://doi.org/10.15407/alg34.01.003

Abstract

Plankton studies in Guatemala are associated with the history of harmful algal blooms (HAB). An important event was observed in 1987, with 193 human poisonings due to shellfish consumption, of which 22 were lethal. The causative organism was Pyrodinium bahamense var. compressum. This species was reported again in November 2019 in the coastal Guatemalan Pacific. The species reached an abundance of 1 × 104 cells/L. In September 2020, the abundance of the Margalefidinium polykrikoides vegetative stage reached 1.24 × 106 cells/L, and its cysts 1.5 × 106 cells/L. Noctiluca scintillans proliferated (the first quantitatively estimated bloom of this species in Guatemala) in November 2020 and March 2021 (up to 1.2 × 106 cells/L). From January to December 2021, monthly monitoring was carried out in front of the Port of Quetzal at three sites (bottle and 25 μm mesh net samples). In April 2022, 11 cases of humans presenting symptoms of paralytic shellfish poisoning (PSP) were recorded in the western sector of the Guatemalan Pacific, in particular, in the municipality of Tiquisate in the department of Escuintla. From May 3 to 27, 2022, a HAB event caused the death of 4 and the poisoning of 34 humans in the departments near Mexico: Retalhuleu (Champerico), San Marcos (Tilapa) and Escuintla (Tiquisate, Buena Vista and Iztapa). The maximum saxitoxin (STX) concentration was determined in Retalhuleu (14,099 MU/100 g); until 7 July 2022, STX continued to be detected in Tilapa and Tiquisate (1,021 MU/100 g). The P. bahamense cells were observed in the stomach contents of the clam Tagelus sp. (Bivalvia: Solecurtidae).

Keywords:

algal blooms, dinoflagellates, Guatemala, Guatemalan Pacific, microalgae, paralytic shellfish poisoning, phytoplankton, Pyrodinium bahamense, saxitoxin

References

Alonso-Rodríquez R. 2004. Hidrología y condiciones ambientales que determinan la proliferación de dinoflagelados causantes de mareas rojas en la bahía de Mazatlán, Sin., México: Dr. Sci. Thesis. La Paz, B.C.S., México: Centro Invest. Biol. Nor., S.C. 116 p.

Anderson D.M., Morel F.M. 1979. The seeding of two red tide blooms by the germination of benthic Gonyaulax tamarensis hypnocysts. Estuar. Coast. Mar. Sci. 8(3): 279–293. https://doi.org/10.1016/0302-3524(79)90098-7

AOAC. 2000. In: Official methods of analysis of Association of Official Analytical Chemists. Gaithersburg: AOAC. Pp. 59–61.

Azanza R.V., Baula I.U. 2005. Fish kills associated with Cochlodinium blooms in Palawan, the "last frontier" of the Philippines. Harm. Algae News. 29: 13–14.

Azanza R.V., Max Taylor F.J.R. 2001. Are Pyrodinium blooms in the Southeast Asian region recurring and spreading? A view at the end of the millennium. AMBIO. J. Human Environ. 30(6): 356–364. https://doi.org/10.1579/0044-7447-30.6.356 https://www.ncbi.nlm.nih.gov/pubmed/11757284

Band-Schmidt C., Duran-Riveroll L., Bustillos J., Leyva-Valenci, I., López-Cortés D., Nuñez-Vazquez E., Hernández F., Ramírez-Rodríguez D. 2019. Paralytic toxin producing dinoflagellates in Latin America: Ecology and physiology. Front. Mar. Sci. 6: 42. https://doi.org/10.3389/fmars.2019.00042

Bardales-Espinoza W.A., Castañón C., Herrera-Herrera J.L. 2019. In: Primer reporte de evaluación del conocimiento sobre cambio climático en Guatemala. Ciudad de Guatemala. Guatemala: Edit. Univ. UVG. Pp. 20–39.

Brosnahan M.L., Ralston D.K., Fischer A.D., Solow A.R., Anderson D.M. 2017. Bloom termination of the toxic dinoflagellate Alexandrium catenella: Vertical migration behavior, sediment infiltration, and benthic cyst yield. Limnol. Oceanogr. 62: 2829–2849. https://doi.org/10.1002/lno.10664 https://www.ncbi.nlm.nih.gov/pubmed/29263558 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725721

Brosnahan M.L., Fischer A.D., Lopez C.B., Moore S.K., Anderson D.M. 2020. Cyst-forming dinoflagellates in a warming climate. Harm. Algae. 91: 101728. https://doi.org/10.1016/j.hal.2019.101728 https://www.ncbi.nlm.nih.gov/pubmed/32057345 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189352

Comisión del Codex Alimentarius. 2017. Criterios para la aprobación de métodos biológicos utilizados para la detección de productos químicos de interés. In: Programa conjunto FAO/OMS sobre normas alimentarias (Budapest, 8–12 Mayo, 2017). Roma, Italia: Organización de las Naciones Unidas para la Alimentación y la Agricultura, Organización Mundial de la Salud. 12 p.

Durán-Riveroll L.M., Band-Schmidt C.J., Okolodkov Yu.B., Almazán-Becerril A. 2019. In: Costas y mares mexicanos: Contaminación, impactos, vulnerabilidad y cambio climático. Ciudad de México. México: UNAM, UAC. Pp. 277–312.

Fischer W., Krupp F., Schneider W., Sommer C., Carpent K.E., Niem V.H. 1995. Guía FAO para la identificación de especies para los fines de pesca. Pacífico centro-oriental. Vol. 1. Plantas e invertebrados. Roma, Italia: FAO. 664. p.

Gao X. 2009. TMDL Report: Nutrient and dissolved oxygen TMDLs for the Indian River Lagoon and Banana River Lagoon. Tallahassee (Florida): Florida Depart. Environ. Protec. Division Environ. Asses. Rest.

García-Moreiras I., Oliveira A., Santos A., Oliveira P., Amorim A. 2021. Environmental factors affecting spatial dinoflagellate cyst distribution in surface sediments off Aveiro-Figueira da Foz (Atlantic Iberian Margin). Front. Mar. Sci. 8: 699483. https://doi.org/10.3389/fmars.2021.699483

García-Pérez J., Carrillo-Ovalle L., Blanda E., Vargas-Montero M. 2018. First report of the genus Gambierdiscus from the Atlantic coast of Guatemala. Harm. Algae News. 61: 9–10.

Glibert P.M., Burkholder J.M. 2018. Causes of harmful algal blooms. In: Harmful algal blooms: A compendium desk reference. 1st ed. Chichester, West Sussex (UK): John Wiley & Sons Ltd. Pp. 1–38. https://doi.org/10.1002/9781118994672.ch1

Hallegraeff G.M., Anderson D.M., Cembella A.D. 2003. Manual on harmful marine microalgae. Monographs on Oceanographic Methodology. 11. Paris: UNESCO. 793 p.

Hoppenrath M., Chomérat N., Horiguchi T. 2014. Marine benthic dinoflagellates -unveiling their worldwide biodiversity. Stuttgart: Schweiz. Verlag. (Nagele u. Obermiller). 276 p.

ICC Instituto Privado de Investigación sobre Cambio Climático. 2022. Resumen Meteorológico 2021. Resultados del Sistema Meteorológico del ICC. Guatemala. 57 p.

INSIVUMEH (Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología). 2022. Sección de hidrología. https://insivumeh.gob.gt/?p=45289

Leiva A.V. 2008. Eventos de marea roja ocurridos en el océano Pacífico de Guatemala: Tesis maestría. Fac. ingenier., Univ. de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala.

Moestrup Ø. 2009. Taxonomic reference list of harmful microalgae. Paris: IOC-UNESCO. www.marinespecies.org/hab

Moore S.K., Trainer V.L., Mantua N.J., Parker M.S., Laws E.A., Backer L.C., Fleming, L.E. 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health. 7(2): S4. https://doi.org/10.1186/1476-069X-7-S2-S4 https://www.ncbi.nlm.nih.gov/pubmed/19025675 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586717

Phlips E.J., Badylak S., Nelson N.G., Havens K.E. 2020. Hurricanes, El Niño and harmful algal blooms in two sub-tropical Florida estuaries: Direct and indirect impacts. Sci. Rep. 10(1): 1910. https://doi.org/10.1038/s41598-020-58771-4 https://www.ncbi.nlm.nih.gov/pubmed/32024897 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002698

Phlips E.J., Badylak S., Christman M., Wolny J., Brame J., Garland J., Hall L., Hart J., Landsberg J., Lasi M., Locjwood J., Paperno R., Scheidt D., Staples A., Steidinger K. 2011. Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA. Harm. Algae. 10(3): 277–290. https://doi.org/10.1016/j.hal.2010.11.001

Reguera B., Alonso R., Moreira A., Méndez S. 2011. Guía para el diseño y puesta en marcha de un plan de seguimiento de microalgas productoras de toxinas. Manuales y Guías. 59. Paris, Viena: Comis. Oceanográf. Int., Org. Nac. Unid. Educ., Ciencia Cult. 46 p.

Citation

Paz-Cordón K.E., Okolodkov Y.B., Cobo-Gradín F. 2024. Harmful blooms caused by dinoflagellates in the Pacific of Guatemala (2019–2022). Algologia. 34(1): 3-19. https://doi.org/10.15407/alg34.01.003