Annual cycle of phytoplankton in the Pacific ocean near Guatemala in relation to physicochemical parameters

Authors

Paz-Cordón K.E.1, Okolodkov Y.B.2*, Cobo-Gradín F.3
1 Instituto de Investigaciones Hidrobiológicas, Centro de Estudios del Mar y Acuacultura, Universidad de San Carlos de Guatemala (IIH-CEMA-USAC), Ciudad de Guatemala, Guatemala
2 Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana (ICIMAP-UV), Boca del Río, Veracruz, Mexico
3 Universidad de Santiago de Compostela (USC), Pontevedra, Galicia, Spain

Section:

Ecology, Cenology, Conservation of Algae and their Role in Nature

Issue:

Vol. 34 No. 3 (2024)

Pages:

205-226

DOI:

https://doi.org/10.15407/alg34.03.205

Abstract

Due to the lack of basic information on the behavior of the phytoplankton community of the Guatemalan Pacific, particularly of the factors that cause harmful algal blooms, monthly monitoring was performed during a year (January–December 2021), which included three hydrometeorological seasons at three sampling sites in Puerto Quetzal (Texaco Buoy, Recalada Buoy and Entre Morros Buoy) at two depths (1.5 m and 5.0 m). These sites are influenced by shipping and nearby human populations. The structure of the phytoplankton community (species composition, abundance, richness and diversity), with an emphasis on potentially toxic and non-toxic harmful species, were evaluated. A total of 53 diatom species from 26 genera and 13 orders and 42 dinoflagellate species from 14 genera and six orders were identified. No significant differences between the sampling depths and different quarters of the year were found. The comparison of the total cell abundance between the three sites showed no significant differences. The results obtained present novel information on the phytoplankton community of the Guatemalan Pacific, filling a gap in a region where algal blooms occur annually with consequent ecological impacts and human poisonings.

Keywords:

diatoms, dinoflagellates, Guatemala, harmful algal blooms, Margalefidinium, microalgae, Pacific Ocean, phytoplankton, Pyrodinium, toxic phytoplankton

References

APHA. 2017. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington: DC Amer. Publ. Health Assoc.

Arévalo-Martínez R. 1945. Guatemala. Ciudad de Guatemala, Guatemala: Tipograf. Nac.

Carrillo-Ovalle H.L. 2009. Fase I: Estudio de los florecimientos algales (mareas rojas), en el Pacífico de Guatemala (Fodecyt No. 31–2007). Ciudad de Guatemala, Guatemala: Secretaría Nac. Cien. Tecnol.

Comisión Portuaria Nacional. 1997. Boletín informativo meteorológico. Puerto Quetzal, Guatemala: Empresa Portuaria Quetzal.

Edler L., Elbrächter M. 2010. The Utermöhl method for quantitative phytoplankton analysis. In: Microscopic and molecular methods for quantitative phytoplankton analysis. Manuals and Guides. 55. Paris: UNESCO. Pp. 13–20

García-Pérez J., Carrillo-Ovalle L., Blanda E., Vargas-Montero M. 2018. First report of the genus Gambierdiscus from the Atlantic coast of Guatemala. Harm. Algae News. 61: 9–10.

INSIVUMEH. 2021. Perspectiva climática Trimestral 'Mayo-Julio. Departamento de Investigación y Servicios Meteorológicos del Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología. 7 p. https://insivumeh.gob.gt/?p=13162

Leiva A.V. 2008. Eventos de marea roja ocurridos en el océano Pacífico de Guatemala. Tesis de maestría. Ciudad de Guatemala, Guatemala: Univ. de San Carlos de Guatemala.

Litchman E., Klausmeier C.A. 2008. Trait-based community ecology of phytoplankton. Ann. Rev. Ecol., Evol., Syst. 39: 615–639. http://www.jstor.org/stable/30245179 https://doi.org/10.1146/annurev.ecolsys.39.110707.173549

Margalef R. 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta. 1(4): 493–509.

NOAA. 2021. Estado del Sistema de alerta del ENSO: Advertencia de La Niña. Nat. Weather Service Nat. Ocean. Atmosphere. Admin. https://origin.cpc.ncep.noaa.gov/products/analysis_

monitoring/enso_disc_feb2021/ensodisc_Sp.shtml

Paz-Cordón K.E. 1997. Identificación, abundancia y temporalidad estacional y espacial de Pyrrophytas y su relación con las variables ambientales presentes en Puerto Quetzal, San José, Escuintla. Tesis licenciat. Ciudad de Guatemala, Guatemala: Univ. San Carlos, Centro de Estud. Mar Acuicult.

Paz-Cordón K.E., Okolodkov Y.B., Cobo-Gradín F. 2024. Harmful blooms caused by dinoflagellates in the Pacific of Guatemala (2019 to 2022). Algologia. 34(1): 3–19. https://doi.org/10.15407/alg34.01.003

Rosales-Loessener F.M.W., Porras E.D., Dix M.W. 1989. Toxic shellfish poisoning in Guatemala. In: Red tides: Biology, environmental science and toxicology. Amsterdam: Elsevier Sci. Publ. Pp. 113–116.

Rosales-Loessener F., Matsuoka K., Fukuyo Y., Sanchez E.H. 1996. Cysts of harmful dinoflagellates found from Pacific coastal waters of Guatemala. In: Harmful and Toxic Algal Blooms. Tokyo: UNESCO. Pp. 193–195.

Salcedo-Garduño M.G., Castañeda-Chávez M.R., Lango-Reynoso F., Sosa-Villalobos C.A., Landeros C., Galaviz-Villa I. 2019. Influence of physicochemical parameters on phytoplankton distribution in the lagoon system of Mandinga, Mexico. Rev. Bio Cien. 6: 1–25. https://doi.org/10.15741/revbio.06.e427

Utermöhl H. 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilung - Int. Ver. Theor. Amgew. Limnol. 9: 41–71.

Wells M., Karlson B., Wulff A., Kudela R., Trick C., Asnaghi V., Trainer V. 2019. Future HAB science: Directions and challenges in a changing climate. Harm. Algae. 91(1): 101632. https://doi.org/10.1016/j.hal.2019.101632 https://www.ncbi.nlm.nih.gov/pubmed/32057342

Citation

Paz-Cordón K.E., Okolodkov Y.B., Cobo-Gradín F. 2024. Annual cycle of phytoplankton in the Pacific ocean near Guatemala in relation to physicochemical parameters. Algologia. 34(3): 205-226. https://doi.org/10.15407/alg34.03.205