Роль росту водоростевого симбіонта в керуванні температурними реакціями широко поширених фотосимбіотичних інфузорій

Автор(и)

Макін Б.*
Варта Парк, 2, Хелстон, Корнуол, TR13 0FN, Велика Британія

Розділ:

Екологія, ценологія, охорона та роль водоростей у природі

Номер:

Том 34 № 4 (2024)

Сторінки:

312-332

DOI:

https://doi.org/10.15407/alg34.04.312

Анотація

Досліджена роль росту водоростевого симбіонта в керуванні температурними реакціями фотосимбіотичних інфузорій. Фотосимбіоз, у випадку якого одноклітинні автотрофи проживають у гетеротрофних господарях, є критично важливим прикладом екологічної взаємодії з точки зору глобальної біомаси, видового різноманіття та первинної продукції. Таким асоціаціям загрожує потепління навколишнього середовища. Хоча конкретні взаємодії, зокрема між коралами і зооксантелами, ретельно задокументовані, екологам бракує загальної теоретичної основи, яка б описувала вплив зміни температури на фотосимбіотичні взаємодії. У роботі застосовано принципи метаболічної теорії екології (MTE) для оцінки метаболічної основи індукованого температурою порушення фотосимбіозу Paramecium bursariaChlorella spp. На відміну від загального прогнозу МТЕ, згідно з яким з підвищенням температури чиста автотрофія повинна зменшуватися, у дослідженому фотосимбіозі господар при потеплінні містив більшу популяцію водоростей-симбіонтів і споживав менше бактеріальної здобичі, що свідчить про збільшення чистої автотрофії. Ця модель спостерігалася для штамів, ізольованих з трьох різних континентів. Вірогідно, це було простим наслідком реакції швидкості росту симбіонтів. Показано, що у контексті фотосимбіозу відносний баланс автотрофів (тобто симбіонтів) і гетеротрофів (господарів) є простим екологічним пристосуванням, яке, мабуть, протидіє термодинамічній тенденції потепління сприяти гетеротрофії. Зроблено висновок, що для оцінки метаболічної основи індукованого температурою порушення фотосимбіозу важливо розглядати її в тандемі з екологічною динамікою асоціацій.

Ключові слова:

потепління, вуглець, міксотрофія, симбіоз, метаболізм, мутуалізм, температура, фотосимбіоз, Paramecium bursaria, Chlorella spp.

Текст статті

Посилання

Allen A.P., Gillooly J.F., Brown J.H. 2005. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19(2): 202–213. https://doi.org/10.1111/j.1365-2435.2005.00952.x

Anderson-Teixeira K.J., Delong J.P., Fox A.M., Brese D.A., Litvak M.E. 2011. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob. Chang. Biol. 17(1): 410–424. https://doi.org/10.1111/j.1365-2486.2010.02269.x

Bailly X., Laguerre L., Correc G., Dupont S., Kurth T., Pfannkuchen A., Entzeroth R., Probert I., Vinogradov S., Lechauve C., Garet-Delmas Marie-José, Reichert H., Yartenstein V. 2014. The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Front. Microbiol. 5: 498. https://doi.org/10.3389/fmicb.2014.00498 https://www.ncbi.nlm.nih.gov/pubmed/25324833 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183113

Baldauf S.L. 2008. An overview of the phylogeny and diversity of eukaryotes. J. Syst. Evol. 46(3): 263–273.

Bates D., Maechler M., Bolker B., Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67(1): 1–48. https://doi.org/10.18637/jss.v067.i01

Berninger U.G., Caron D.A., Sanders R.W. 1992. Mixotrophic algae in three ice-covered lakes of the Pocano Mountains, USA. Freshwat. Biol. (28): 263–272. https://doi.org/10.1111/j.1365-2427.1992.tb00583.x

Bradford M.A., Watts B.W., Davies C.A. 2010. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16(5): 1576–1588. https://doi.org/10.1111/j.1365-2486.2009.02040.x

Brown J., Gillooly J., Allen A., Savage V., West G. 2004. Toward a metabolic theory of ecology. Ecology. 85(7): 1771–1789. https://doi.org/10.1890/03-9000

Correa A.M., Baker A.C. 2011. Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Glob. Change Biol. 17: 68–75. https://doi.org/10.1111/j.1365-2486.2010.02242.x

Decelle J., Colin S., Foster R.A. 2015. Photosymbiosis in Marine Planktonic Protists. In: Marine Protists. Tokyo: Springer. Pp. 465–500. https://doi.org/10.1007/978-4-431-55130-0_19

Fujishima M. 2009. Endosymbionts in Paramecium. Berlin: Springer-Verlag. 252 p. https://doi.org/10.1007/978-3-540-92677-1

Hartmann M., Grob C., Tarran G.A., Martin A.P., Burkill P.H., Scanlan D.J., Zubkov M.V. 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc. Nat. Acad. Sci. USA. 109(15): 5756–5760. https://doi.org/10.1073/pnas.1118179109 https://www.ncbi.nlm.nih.gov/pubmed/22451938 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326507

Johnson M.D. 2011. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosyn. Res. 107: 117–132. https://doi.org/10.1007/s11120-010-9546-8 https://www.ncbi.nlm.nih.gov/pubmed/20405214

Karhu K., Auffret M.D., Dungait J.A., Hopkins D.W., Prosser J.I., Singh B.K., Subke J.-A., Wookey P.A., Agren G., Sebastia M.-T., Gouriveau F., Bergkvist G., Meir P., Nottingham A., Salinas N., Hartley I.P. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 513(7516): 81–84. https://doi.org/10.1038/nature13604 https://www.ncbi.nlm.nih.gov/pubmed/25186902

Kiers E.T., Palmer T.M., Ives A.R., Bruno J.F., Bronstein J.L. 2010. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13(12): 1459–1474. https://doi.org/10.1111/j.1461-0248.2010.01538.x https://www.ncbi.nlm.nih.gov/pubmed/20955506

Lesser M.P. 2004. Experimental biology of coral reef ecosystems. J. Exp. Mar. Biol. Ecol. 300: 217–252. https://doi.org/10.1016/j.jembe.2003.12.027

Lesser M.P. 2011. In: Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer. Pp. 405–419. https://doi.org/10.1007/978-94-007-0114-4_23

Lesser M.P. 2013. Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things? Coral Reefs. 32(1): 25–33. https://doi.org/10.1007/s00338-012-0993-x

Lopez-Urrutia A., San Martin E., Harris R.P., Irigoien X. 2006. Scaling the metabolic balance of the oceans. Proc. Nat. Acad. Sci. USA. 103(23): 8739–8744. https://doi.org/10.1073/pnas.0601137103 https://www.ncbi.nlm.nih.gov/pubmed/16731624 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482648

Lowe C.D., Minter E., Cameron D., Brockhurst M. 2016. Shining a Light on Exploitative Host Control in a Photosynthetic Endosymbiosis. Curr. Biol. 26(2): 207–211. https://doi.org/10.1016/j.cub.2015.11.052 https://www.ncbi.nlm.nih.gov/pubmed/26748854

Luo Y. 2007. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38: 683–712. https://doi.org/10.1146/annurev.ecolsys.38.091206.095808

Makin B. 2023. Microplastic contamination reduces productivity in a widespread freshwater photosymbiosis. Aquat. Biol. 32: 13–19. https://doi.org/10.3354/ab00758

Melillo J.M. 2002. Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science. 298(5601): 2173–2176. https://doi.org/10.1126/science.1074153 https://www.ncbi.nlm.nih.gov/pubmed/12481133

Minter E., Lowe C.D., Sørensen M., Wood A.J., Cameron D.D., Brockhurst M.A. 2018. Variation and asymmetry in host-symbiont dependence in a microbial symbiosis. BMC Evol. Biol. 18(1): 108. https://doi.org/10.1186/s12862-018-1227-9 https://www.ncbi.nlm.nih.gov/pubmed/29986646 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038246

National BioResource Project. 2019. Available at: http://nbrpcms.nig.ac.jp/paramecium/strain/?lang=en

Padfield D., Matheson G. 2018. Robust Non-Linear Regression using AIC Scores. R package version 1.0.0. https://CRAN.R-project.org/package=nls.multstart https://doi.org/10.32614/CRAN.package.nls.multstart

Padfield D., Yvon-Durocher G., Buckling A., Jennings S., Yvon-Durocher G. 2016. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19(2): 133–142. https://doi.org/10.1111/ele.12545 https://www.ncbi.nlm.nih.gov/pubmed/26610058 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991271

Padfield D., Buckling A., Warfield R., Lowe C., Yvon-Durocher G. 2018. Linking phytoplankton community metabolism to the individual size distribution. Ecol. Lett. 21(8): 1152–1161. https://doi.org/10.1111/ele.13082 https://www.ncbi.nlm.nih.gov/pubmed/29797805 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849760

Platt T., Sathyendranath S., Ravindran P. 1990. Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proc. Biol. Sci. 241: 101–111. https://doi.org/10.1098/rspb.1990.0072

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Rose J.M., Caron D.A. 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52(2): 886–895. https://doi.org/10.4319/lo.2007.52.2.0886

Salsbery M.E., DeLong J.P. 2021. Thermal adaptation in a holobiont accompanied by phenotypic changes in an endosymbiont. Evolution. 75(8): 2074–2084. https://doi.org/10.1111/evo.14301 https://www.ncbi.nlm.nih.gov/pubmed/34192342

Sanders R.W. 1991. Mixotrophic Protists in Marine and Freshwater Ecosystems. J. Eukaryot. Microbiol. 38: 76–81. https://doi.org/10.1111/j.1550-7408.1991.tb04805.x

Sanders R.W. 2011. Alternative Nutritional Strategies in Protists: Symposium Introduction and a Review of Freshwater Protists that Combine Photosynthesis and Heterotrophy. J. Eukaryot. Microbiol. 58(3): 181–184. https://doi.org/10.1111/j.1550-7408.2011.00543.x https://www.ncbi.nlm.nih.gov/pubmed/21477096

Schaum C.E., Barton S., Bestion E., Buckling A., Garcia-Carreras B., Lopez P., Lowe C., Pawar S., Smirnoff N., Trimmer M., Yvon-Durocher G. 2017. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat. Ecol. Evol. 1(4): 94. https://doi.org/10.1038/s41559-017-0094 https://www.ncbi.nlm.nih.gov/pubmed/28812653

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Nethods. 9(7): 676–682. https://doi.org/10.1038/nmeth.2019 https://www.ncbi.nlm.nih.gov/pubmed/22743772 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844

Sonntag B., Summerer M., Sommaruga R. 2011. Are Freshwater Mixotrophic Ciliates Less Sensitive to Solar Ultraviolet Radiation than Heterotrophic Ones? J. Eukaryot. Microbiol. 58(3): 196–202. https://doi.org/10.1111/j.1550-7408.2011.00540.x https://www.ncbi.nlm.nih.gov/pubmed/21414057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182536

Summerer M., Sonntag B., Sommaruga R. 2008. Ciliate-symbiont specificity of freshwater endosymbiotic Chlorella (Trebouxiophyceae, Chlorophyta). J. Phycol. 44(1): 77–84. https://doi.org/10.1111/j.1529-8817.2007.00455.x https://www.ncbi.nlm.nih.gov/pubmed/27041043

Tylianakis J.M., Didham R.K., Bascompte J., Wardle D.A. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11(12): 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x https://www.ncbi.nlm.nih.gov/pubmed/19062363

Unrein F., Massana R., Alonso-Saez L., Gasol J.M. 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol., Oceanogr. 52(1): 456–469. https://doi.org/10.4319/lo.2007.52.1.0456

Walther G.R. 2010. Community and ecosystem responses to recent climate change. Phil. Trans. R. Soc. B. 365: 2019–2024. https://doi.org/10.1098/rstb.2010.0021 https://www.ncbi.nlm.nih.gov/pubmed/20513710 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880129

Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Trevor J.C., Fromentin J.M., Hoegh-Guldberg O., Bairlein F. 2002. Ecological responses to recent climate change. Nature. 416(6879): 389–395. https://doi.org/10.1038/416389a https://www.ncbi.nlm.nih.gov/pubmed/11919621

Weis V.M. 2008. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211(19): 3059–3066. https://doi.org/10.1242/jeb.009597 https://www.ncbi.nlm.nih.gov/pubmed/18805804

Weis V.M. 2010. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both? Mol. Ecol. 19(8): 1515–1517. https://doi.org/10.1111/j.1365-294X.2010.04575.x https://www.ncbi.nlm.nih.gov/pubmed/20456235

Wilken S., Huisman J., Naus-Wiezer S., Van Donk E. 2013. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol. Lett. 16: 225–233. https://doi.org/10.1111/ele.12033 https://www.ncbi.nlm.nih.gov/pubmed/23173644

Wilken S., Schuurmans J.M., Matthijs H.C. 2014. Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding. New Phytol. 204(4): 882–889. https://doi.org/10.1111/nph.12975 https://www.ncbi.nlm.nih.gov/pubmed/25138174

Wood S.N. 2006. Generalized Additive Models: An Introduction with R. 2nd ed. New York: Chapman and Hall/CRC. 496 p.

Yvon-Durocher G., Jones J.I., Trimmer M., Woodward G., Montoya J.M. 2010. Warming alters the metabolic balance of ecosystems. Philos. Trans. Roy. Soc. B. 365(1549): 2117–2126. https://doi.org/10.1098/rstb.2010.0038 https://www.ncbi.nlm.nih.gov/pubmed/20513719 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880133

Yvon-Durocher G., Caffrey J.M., Cescatti A., Dossena M., del Giorgio P., Gasol J.M., Pumpanen J., Staehr P., Trimmer M., Woodward F., Allen A. 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature. 487(7408): 472–476. https://doi.org/10.1038/nature11205 https://www.ncbi.nlm.nih.gov/pubmed/22722862

Yvon-Durocher G., Hulatt J.C., Woodward G., Trimmer M. 2017. Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nat. Climate Change. 7: 209–213. https://doi.org/10.1038/nclimate3229

Zubkov M.V., Tarran G.A. 2008. High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature. 455(7210): 224–226. https://doi.org/10.1038/nature07236 https://www.ncbi.nlm.nih.gov/pubmed/18690208

Цитування

Макін Б. 2024. Роль росту водоростевого симбіонта в керуванні температурними реакціями широко поширених фотосимбіотичних інфузорій. Альгологiя. 34(4): 312-332. https://doi.org/10.15407/alg34.04.312